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Abstract—During the last decade Electric Vehicles (EVs)
surged in popularity. However, their mass adoption is slowed
by the limited capacity of their Energy Storage System (ESS).
Lithium Ion (Li-Ion) technology has established itself as the
de-facto standard for mobile applications, though its energy
density and cost put a hard limit on the maximum size of
viable EV battery packs. Maximizing its utilization therefore
becomes of central importance. To efficiently use a battery pack
over its entire lifetime, the State of Health (SoH) of the cells
needs to be taken into account. In this paper, we propose a
novel preconditioning algorithm to minimize the time an EV is
connected to the charging station. Our proposed approach uses
existing Active Cell Balancing (ACB) hardware of the battery
pack to precondition the State of Charge (SoC) of cells such that
all cells reach the top SoC threshold at the same time without
requiring an additional balancing phase during charging. This is
done by considering the individual cells’ SoH to precondition
them for achieving an equal time to charge fully. Applying
the same approach for discharging, we can extend the driving
range of an EV, which otherwise is limited by the cell with the
lowest SoC in the pack. Our analysis of various usage scenarios
shows that our proposed preconditioning algorithm increases the
usable energy of the battery pack by up to 1.8 % compared to
conventional balancing algorithms while effectively halving the
time connected to a charging station, all without requiring any
additional hardware components.

I. INTRODUCTION AND RELATED WORK

This paper builds on the concept originally presented in
[1] during the 22nd Euromicro Conference on Digital System
Design (DSD). In the pursuit of sustainable mobility and
reduced CO2 emissions, the electrification of the transport
sector is playing an important role. It enables efficient, and
therefore potentially more cost effective, silent transport with-
out emitting exhaust gases locally. However, the electrification
of vehicles is impeded by factors such as long charging
times, limited range and cost of the battery pack. Due to
the last point, investment in Battery Electric Vehicles (BEVs)
is most profitable where the initial cost of the battery pack
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(a) Conventional charging
process.

(b) Conventional discharg-
ing process.
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(d) Discharging process
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Fig. 1: Illustration of the proposed preconditioning algorithm
with an exemplary battery pack with four cells. (a) and (b)
show the development of the cells’ State of Charge (SoC) over
time for conventional charging and discharging respectively.
In (c) and (d) the proposed preconditioning algorithm for
charging and discharging is displayed. Instead of balancing
all cells to the same SoC level after charging or discharging,
they are individually balanced to a certain SoC so that they
reach a uniform SoC level after charging or discharging, thus
significantly shortening the charging time while increasing the
usable capacity.

can be offset by savings in fuel. Therefore, he profitability
of BEVs increases with rising usage hours. Because of this,
the predestined use case for BEVs is in public transport.
For this, however, minimizing the charging time is of crucial
importance to reduce the turnaround time and, hence, increase



profitability. To facilitate this, methods need to be developed
to optimally utilize the given limited capacity of the battery
pack and reduce the charging time. The technology currently
used in most battery packs for BEVs is Lithium Ion (Li-Ion)
cells.

Since these cells can potentially be dangerous, a Battery
Management System (BMS) is required to monitor the cell
parameters such as voltage and temperature and to guarantee
a safe and reliable operation [2]. Moreover, due to variances
in manufacturing and rate of aging, Li-Ion cells charge
and discharge at different rates [3]. This effect accumulates
charge in stronger cells over time and renders the pack
unusable due to the diminishing overall usable capacity if not
addressed. Cell balancing is typically performed to minimize
the variations in SoC of individual cells in the pack. The
conventional approach is passive charge balancing, where
excess charge is dissipated as heat over a resistor that is
attached to each cell. Naturally, this leads to a reduction
in efficiency. To counter this drawback, a different method
is gaining traction: Active Cell Balancing (ACB), where
the SoC of all cells is equalized by transferring energy
instead of dissipating it [4], [5]. However, this method
necessitates additional circuitry containing temporary energy
storage elements such as inductors, capacitors or transformers
accompanied by MOSFETs.

Problem motivation: Existing ACB techniques focus on
equalizing the SoC of all cells in a battery pack. However,
the rate at which the ACB architectures can equalize the
pack depends on the variations in the charge levels and the
balancing current value, which is typically limited by the
hardware components in the ACB architecture. We focus on
the ACB architecture in Fig. 2 since it has been shown to
be highly efficient with a reasonable number of switches [6].
This architecture furthermore allows non-neighbor balancing,
which makes direct charge transfers between non-adjacent
cells possible. In comparison to the high magnitude of charg-
ing or discharging currents, which can be in hundreds of
Amperes for Electric Vehicle (EV) applications, the balanc-
ing current is small, typically between 1 A to 10 A [7]. It,
therefore, may not be possible to counteract the spread in the
cells SoC resulting from charging or discharging in real-time.
The charging process, even when started with an equalized
pack, might need more than one balancing phase in between
(as shown in Fig. 1a), since each cell charges at a different
rate, due to their variations in the State of Health (SoH).
As a result the overall charging time, i.e., the total time the
vehicle is plugged in the charging port, is increased. A similar
phenomenon is also observed during the discharging process,
where the driving range is reduced (as shown in Fig. 1b) due
to the different SoH values of the cells.

In this paper, we present further analysis of the ACB
approach, called proactive SoC-preconditioning, introduced in
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Fig. 2: The underlying non-neighbor ACB architecture of
our evaluation framework consists of eight switches and one
inductor.

[1]. In comparison to existing ACB techniques, which mainly
focus on maintaining an equal SoC of all cells, our proposed
preconditioning algorithm deliberately sets the SoC value of
the cells, so that, after discharging or charging, all cells in
the pack reach their minimum or maximum cut-off voltages
at the same time. This is achieved by shifting the value that
needs to be equalized from SoC to Residual Missing Energy
(RME) or Residual Available Energy (RAE), as detailed in
Section II, for each cell in the pack by taking their SoH
into account [8]. Fig. 1 visualizes the differences between
the conventional charging and discharging approaches and
our proposed preconditioning method, exemplary for a battery
pack consisting of four cells. Each line in the graphs stands
for the development of the SoC of one cell over time. It is
visible that the actual charging phase for the conventional ACB
method shown in Fig. 1a is interrupted in order to perform the
balancing phase, thus prolonging the time the BEV needs to
be plugged in to the charging port.

On the contrary, the charging phase of our proposed pre-
conditioning process is consolidated into one single phase
by preconditioning the SoC of the cells to different values
depending on their charging or discharging rate and SoH.
Since this preconditioning process can be performed without
being connected to a charger, the overall time the BEV is
connected to the charging station can be significantly reduced.

Related work regarding proactive balancing can be found in
literature, however the impact on battery pack efficiency and
specifically charging times has not been examined sufficiently
[9]. Our specific contributions in this paper are:

• We propose a proactive preconditioning algorithm in
order to prepare a battery pack for upcoming usage
(Section II).

• We implemented the algorithm in the open source balanc-
ing Cyber-Physical Co-Simulation Framework (CPCSF)
from [10]. This framework features an empirical battery
aging model based on [11] and support for vehicle, drive
cycle and climate models to generate different usage
scenarios.

• We performed a case study with synthetic usage scenar-
ios, simulating a Tesla Model S and its battery pack over



its entire lifetime (Section III).
• We show that our proposed preconditioning algorithm in-

creases the total energy throughput by up to 1.8 %, while
reducing the overall combined balancing and charging
time by up to 70 % (Section IV).

II. PRECONDITIONING ALGORITHM

Conventional charge balancing algorithms use the cell’s SoC
as the underlying balancing parameter. Since the balancing
process happens after the charging or discharging, in order to
counteract the resulting SoC variation, it is of reactive nature.
Our proposed preconditioning algorithm, however, uses the
ACB architecture proactively. This fundamental shift makes it
necessary to anticipate the future battery pack behavior, since
the upcoming usage determines the target SoC level for each
cell. Preconditioning yields these two options:
A) The battery pack gets preconditioned, so that at the end of
the charging process all cells reach 100 % SoC simultaneously,
therefore reducing the overall charging time.
B) The battery pack gets preconditioned, so that all cells
reach the SoC threshold at which charging becomes necessary
simultaneously, therefore increasing the range. The following
section will detail the differences between these two options
which we call preconditioning for charging and precondition-
ing for discharging.

A. Preconditioning for Charging

A conventional charging operation consists of multiple
phases:

1) Charge the battery pack until the first cell reaches
100 % SoC1.

2) Balance the battery pack until all cells have a uniform
SoC.

3) Charge the battery pack again until the first cell reaches
100 % SoC.

4) Repeat the process until a defined threshold of SoC
variance is met and all cells are close to 100 % SoC.

Fig. 3 displays this process for an exemplary battery pack
consisting of 12 cells. First, the battery pack is charged until
one cell reaches 100 % SoC. It can be observed that the SoCs
of the cells diverge during this phase due to their difference
in charging rate determined by their SoH values. This spread
is then counteracted with a subsequent balancing phase and
the process is repeated. The battery pack needs to be plugged
in during the entire charging process because it is unknown if
after each charging phase another balancing phase is necessary.

Our preconditioning approach, on the other hand, incor-
porates knowledge of the battery aging status to predict the
rate a particular cell charges at. To quantify this aging status,
the SoH is introduced. As there is no consensus on the

1We denote with 100 % SoC the SoC chosen by the manufacturer which
guarantees a suitable lifetime of the pack. The effective ”physical” SoC at
100 % might be lower (e.g. 80 %). This also applies to 0 % SoC where the
physical SoC might be chosen around 20 %.
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Fig. 3: Conventional charging process. Alternating charging
and balancing phases to achieve full charge will extend the
time the vehicles is connected to the charging station.

definition of the SoH yet, many different definitions can be
found in literature [12]. In this paper we define the SoH as
a weighted combination of two values, one for the loss in
capacity (SoHC) and one for the increase in internal resistance
(SoHR) with SoH, SoHC, SoHR ∈ [0, 1]. This separation
allows to optimize the impact of the algorithm in terms of
the expected usage scenario. In a scenario where available
energy (e.g. range of a car) is more important, the weights
can be shifted towards SoHC, whereas the weights can be
shifted towards SoHR for a scenario that emphasizes power
output. An SoH of 1 represents nominal capacity or nominal
internal resistance. End-of-life (EOL) criterions are chosen
for the remaining capacity and the internal resistance, upon
which the respective SoHs are defined to be 0. The criterion
EoLC is defined as the remaining capacity Cm reaching
75 % of the nominal capacity Cn. The criterion EoLR is
defined as the internal resistance Ri,m doubling, compared to
the nominal internal resistance Ri,n. SoHC and SoHR are
therefore defined according to Equations 1 & 2.

SoHC =

(
Cm

Cn
− EoLC

)
· 1

1− EoLC
(1)

SoHR =

(
EoLR −

Ri,m

Ri,n

)
· 1

EoLR − 1
(2)

As the SoH reflects the aging induced battery degradation,
it can be used to define a metric to quantify missing and
available energy in a given cell. This metric can serve as the
basis upon which the balancing algorithm converges to instead
of the SoC . In the previous work in [1] we used a time based
metric that used knowledge about the charging or discharging
currents to estimate its values. We however have since learned
that the current cancels out if the SoH is used instead. The
resulting metric RME, is defined according to Equation 3 and
incorporates the cells’ nominal capacity Cn, its SoC and SoH,



its EOL criterion, as well as the target SoCt for the operation
after the balancing procedure [8]. j denotes the index of the
respective cell.

RMEj = −Cn·(SoCt−SoCj)·(SoHC,j·(1−EoLC)+EoLC)

(3)
All RMEj are stored in the list TRME .
Instead of the cell’s SoC we now use RME as the base

of the preconditioning procedure. The preconditioning charge
transfer strategy for charging, visualized in Fig. 6, comprises
the following steps:

After the preconditioning process for charging, the RME

values of all cells are equalized, though their respective SoC
may vary widely. Fig. 4b displays the SoC development of
the cells during this preconditioning process, compared to a
conventional ACB shown in Fig. 4a. After preconditioning
the battery pack the actual charging phase is initiated, which
leads to all cells in the pack reaching 100 % SoC at the same
time. We assume a Constant Current Constant Voltage (CCCV)
charging strategy with a charging rate of 0.5 c Fig. 5 exemplary
shows the preconditioning phase with subsequent Constant
Current (CC) charging phase for a battery pack with 12 cells.
The BEV doesn’t need to be plugged in to the charging port
during the preconditioning phase, which significantly reduces
the length of the charging time.

B. Preconditioning for Discharging

Similar to the charging process, the battery pack can be pre-
conditioned for discharging. Therefore, we define a parameter
Residual missing energy RAE, which is calculated according
to Equation 4 that depends on the SoHC, the EoLC, and the
current SoC [8].

RAEj = Cn ·(SoCj−SoCt) ·(SoHC,j ·(1−EoLC)+EoLC)

(4)
This value is calculated for all cells in the pack and becomes
our new underlying balancing parameter. Similar to the pre-
conditioning for charging, we follow the aforementioned steps
until all cells’ RAEj are equalized. This ensures that the
discharging of the battery pack results in all cells reaching
their target SoC at the same time, and therefore maximizing
the utilization of the battery pack.

III. ANALYSIS AND EVALUATION FRAMEWORK

In extension of the work presented in [1], we implemented
the preconditioning algorithm in the battery cycling, aging and
balancing simulation framework from [13] which in turn is
based on the CPCSF from [10].

This framework allows to model the behavior of individual
cells in a battery pack for realistic use cases of a vehicle over
it’s entire lifetime. The details of this framework are presented
in this section.

The framework is set up in layers around models of battery
cells, which form the fundamental core and hold all the
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Fig. 4: SoC development during a) conventional balancing and
b) preconditioning.

information about the cells physical parameters as well as
aging status. Each layer consecutively adds functionality to
the framework, such as a battery pack model, consisting of a
BMS wrapping the cells, and a ACB system. The battery pack
model is embedded in a larger vehicle model, that provides
discharging functionality, by generating a vehicle specific
energy demand over a drive cycle, and charging functionality,
by emulating a CCCV charging system. This vehicle model
is controlled by scenarios, that provide instructions about the
usage pattern of the vehicle as well as a climate model of the
environment.

a) Cell Model: To model the cells in our framework, a
Panasonic NCR18650B Li-Ion cell with a nominal voltage of
3.6 V, nominal capacity of 2.5 Ah was chosen. The cell model
contains information about its current SoC, SoH and internal
resistance Ri and provides an interface to apply current as well
as measure its current voltage.

It furthermore features a method to simulated the cell aging,
based on the cycle count, the calendric age, the Depth of
Discharge (DoD), the ambient temperature, the SoC at which
a cell is stored and other cell inherent parameters detailed in
[11].

b) Battery Pack: Multiple battery cells are connected
to form the battery pack. The battery pack is modeled after
a Tesla Model S battery pack with 18650 cells in 96S74P
configuration and 85 kWh capacity [14].

Besides these parameters, the battery pack model provides
a BMS, that monitors the state of the individual cells and
maintains the pack in a safe operating range, as well as ACB
functionality to equalize the cells charge levels.

c) Active Cell Balancing Architecture: To enable ACB,
a charge transfer circuit is modeled in our framework. In this
paper we focus on an inductor based architecture displayed in
Fig. 2. This architecture has been derived from an automatic
circuit synthesis as the optimal solution. It furthermore allows
for non-neighbor charge transfer, meaning it is not limited to
charge transfer between adjacent cells. However, it has the
limitation that a cell cannot participate in any charge transfer
if it is situated between two cells that are currently exchanging
charge. Therefore, charge transfers over long distances result
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Fig. 5: Preconditioning process. The preconditioning phase
(dotted) is followed by only one charging phase resulting in
all cells of the battery pack to be fully charged at once.

in lower losses but also reduce the number of concurrent
charge transfers.

d) Charge Balancing Strategy: The fundamental prob-
lem, that is addressed by charge balancing strategies, is to
pick a set of pairs p = (σ, δ) of sending (σ) and receiving
(δ) cells, to facilitate charge transfers that transmit charge as
quick as possible while minimizing losses at the same time.
This results in an optimization problem between balancing
time and balancing losses. There are many balancing strategies
discussed in literature. We chose one that has proven to be
efficient on our chosen balancing architecture [15]. A typical
example of such a charge balancing process is displayed in
Fig. 4a.

e) Vehicle model: The battery pack is part of a vehicle
model, that provides it with information about the environ-
ment, such as temperature, and applies a charging or dis-
charging current. The charging current is provided by a CCCV
charger and is set to a charging rate of 0.5 C. The discharging
current is derived from the energy demand of a Tesla Model
S that is driven according to the WLTP class 3 drive cycle
[16]. The vehicle models’ energy demand estimation uses open
source measurements for the ABC coefficients done by the
EPA [17].

f) Scenarios: To generate a realistic usage pattern for
the vehicle model, scenarios are defined. These scenarios
determine the daily utilization and control the SoC at which
the charging process is initiated. They furthermore provide a
climate model to simulate the effect of ambient temperature on
the aging process. In this example a temperature climate model
with temperature data from the city of Munich was chosen to
replicate seasonal variations. The model, however, does not
take into account the heating that occurs during usage and,
therefore, mainly models the effect of the temperature during
storage.

Four scenarios were generated where the two parameters
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Fig. 6: Overview of the structure and interdependencies of the
elements of the simulation scenarios.

daily driving time tdd and SoC threshold at which the charging
is initiated SOCT were varied. We chose the daily driving
time to either be 1 h or 2 h which results in ≈ 46 km or
≈ 92 km respectively. For each of the four scenarios simu-
lations with preconditioning and with regular SoC balancing
were conducted for comparison. We chose these driving dis-
tances, as on the one hand, a representation of the average
daily driving behavior in the USA and, on the other hand,
an intensive use case [18]. The second varied parameter was
the threshold at which the charging is initiated SOCT. We
chose this value to either be 10 % or 40 % to cover one
use case where the battery gets depleted regularly and one
scenario where it is recharged at intermediate SoC values.
These parameter variations allow us to evaluate the efficacy of
the preconditioning algorithm over a broader range of usage
scenarios. Fig. 6 displays a flow chart of the processes and
decisions controlled by the scenario. After initialization of the
model and the cells’ SoC and SoH distribution, based on a
seed for reproducibility, a cycle is entered. In this cycle the
battery pack is repeatedly charged and discharged, following
the scenario parameters, and the cells are aged according to
the implemented aging model from [11]. After every charging
and discharging operation a check is performed whether the
criteria for preconditioning are met. The criteria are met, if the
RME deviation or the RAE deviation respectively surpass a



threshold of 5 %. The cycle is repeated until the battery back
has reached its EOL. The results from these simulations are
presented in the following section.

IV. RESULTS

The case study, that has been conducted in the original
version of this paper, has shown, that SoC preconditioning
can have positive impact on the capacity utilization of battery
backs, while reducing the combined charging and balancing
time [1]. However, a certain aging state was presupposed and
therefore, the SoH development over time was not taken into
account. The simulation framework, detailed in Section III,
on the other hand, allows for a more in-depth analysis of
the efficacy of the preconditioning method, over a wide range
of aging conditions. In the following, the simulation results
for the four scenarios are laid out. Table I lists the scenario
parameters.

Over the lifetime of a Li-Ion cell, its remaining capacity
continuously decreases. Various factors, amongst which are
cycling frequency, charging and discharging currents, temper-
ature and time in general, influence the aging behavior. As
detailed in Section III, the aging status is quantified by the
SoH. Fig. 7 displays the simulated SoH development of all
scenarios over their battery pack’s lifetime.

The SoH deterioration is simulated according to the model
presented in Section III.

The solid line graphs the pack’s average SoH, while the
transparent areas represent the band between minimum and
maximum SoH. The figure shows, that the utilization, both in
terms of driving frequency as well as DoD, has a significant
influence on the aging behavior. It can be seen, that the
weakest cell in scenario SOCT10 tdd2 reaches its EOL after
≈ 9 years while the other scenarios are able to last until the
end of the simulation after 10 years. Besides that also the
influence of the seasonal climate conditions is visible. Most
importantly however, is the increasing gap between minimum
and maximum SoH. This gap results in an expanding disparity
in the usable capacity between the cells, which is counteracted
by the preconditioning algorithm.

In the following the results of the preconditioning algo-
rithm are directly compared to results from a simulation with
identical initial configuration, with the only difference being,

Identifier Driving
Cycle

Climate
Model

Charging
Threshold
SOCT

Daily
Driving
Time tdd

SOCT40 tdd1 WLTP3 Munich 40 % 1 h

SOCT40 tdd2 WLTP3 Munich 40 % 2 h

SOCT10 tdd1 WLTP3 Munich 10 % 1 h

SOCT10 tdd2 WLTP3 Munich 10 % 2 h

TABLE I: Overview of the simulation parameters of the
different scenarios.
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Fig. 7: Development of the battery pack’s SoH over time. The
solid line graphs the average SoH for each pack, while the
transparent band covers the spectrum between minimum and
maximum SoH.
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Fig. 8: Difference in total driving distance between the results
from the preconditioning scenario and the reference scenario
with SoC balancing, integrated over time.

that conventional SoC balancing was applied. This serves
as a baseline to quantify the efficacy of the preconditioning
method. Two metrics are of key interest. Firstly the amount
of energy that can additionally be extracted from the battery
pack during discharging, and subsequently the gained absolute
driving range. Secondly the combined charging and balancing
time as this represents the time during which the vehicle needs
to remain plugged in to a charger.

Fig. 8 displays the difference in total driven distance be-
tween the scenarios with preconditioning and those without.
The plots show that the preconditioning algorithm increases
the total driven distance compared to the conventional balanc-
ing.

This increase in performance stems from the ability of the
preconditioning algorithm to make the residual energy in all
cells accessible, which would otherwise have been inaccessible
with the conventional SoC balancing method, as discharging
would have to be stopped as soon as one cell has reached its
discharge cut-off voltage. The preconditioning algorithm, on
the other hand conditions the cells before discharging, so that
all cells reach their discharging cut-off voltage at the same
time.

Moreover, the gradients of the graphs increase over time,



which indicates that the benefits from preconditioning inten-
sify with progressing aging. It is furthermore visible that
higher vehicle utilization results in higher gains from the
preconditioning. For the highest load scenario SOCT10 tdd2
a total driving distance benefit of 3500 km after 5 years can be
observed.

Fig. 9 charts the ratio of the total energy throughput of the
scenarios with preconditioning and those without. It again is
visible that the scenarios with high utilization exhibit a larger
gain from the precondition due to the increased aging disparity.
For the scenario SOCT10 tdd1 a relative performance gain
in energy throughput of 1.18 % after 10 years is visible.

Lastly, the ratio of the combined balancing and charging
times between the scenarios with preconditioning and the
reference scenarios is plotted in Fig. 10. For all scenarios a
beneficial trend for the preconditioning method can be seen.
This stems from the fact that the methods all but eliminates
the balancing phase after the charging process, potentially
cutting the charging time in half. It again is visible, that
higher utilization yields higher gains from the preconditioning
method. The reduction in time required for a full charge can
be reduced by between 30 % and 70 % depending on the level
of utilization.

We have shown that our proposed preconditioning method
has beneficial impact for both charging time as well as usable
capacity of a battery pack for all presented scenarios.

V. CONCLUSION

In this paper we proposed a novel approach to battery
pack management for systems with Active Cell Balancing
(ACB) architectures. ACB enables the transfer of charge from
one cell to another. Conventionally, it is used to reactively
balance State of Charges (SoCs) in a battery pack. We propose
a proactive preconditioning algorithm that uses knowledge
about the cells’ State of Health (SoH) to derive a metric that
can be used as the balancing target instead of the SoC. We
are able to show that this shift increases the battery pack’s
total usable capacity while, at the same time, significantly
reducing the time the pack needs to be connected to a power
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source. The concept was first introduced in [1] during the 22nd
Euromicro Conference on Digital System Design (DSD). This
paper conducts further investigation into the viability of the
concept by simulating a variety of different usage scenarios
in our combined battery aging and balancing framework. The
scenarios vary the Depth of Discharge (DoD) as well as the
daily driving distance during a charging/discharging cycle. The
results from these simulations show, that preconditioning of
the battery pack is effective in reducing the total time the
pack must be connected to the grid during charging by up
to 70 %. Further, it is established that, using preconditioning,
the usable capacity drawn from the pack can be increased
by 1.8 % when compared to conventional discharging. The re-
maining question now is the integration of the preconditioning
algorithm in real world use case scenarios. And specifically
the decision, whether to use the RME or RAE optimization
target. However, this issue can be solved by observing the
user’s behavior, or it even becomes trivial for predetermined
routes, such as in public transport applications. Overall, our
findings confirm the results of the previous paper for the entire
range of aging conditions of the battery pack.
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