
No-Code Shadow Things Deployment for the IoT
Ege Korkan1, Emanuel Regnath1, Sebastian Kaebisch2, Sebastian Steinhorst1

1 Technical University of Munich, Germany, Email: {ege.korkan, emanuel.regnath, sebastian.steinhorst}@tum.de
2 Siemens AG, Germany, Email: {sebastian.kaebisch}@siemens.com

Abstract—The Internet of Things (IoT) has brought Internet
connectivity to devices from different domains and with different
constraints. This, however, requires system developers to have
a deep understanding of the individual devices’ functionalities
to achieve a successful integration. The Thing Description (TD)
standard from the World Wide Web Consortium (W3C) is able
to describe such device capabilities in a machine and human-
readable format. While this standardization effort already pro-
vides many benefits to developers, the lack of easy-to-deploy
virtual device instances introduces issues such as an increased
risk for errors during the integration phase of IoT systems.

In this paper, we introduce a novel method to create virtual
instances of IoT devices based on their TD that act like the real
device, which we call the Shadow Thing Method (STM). In the
development and deployment stages of IoT systems, STM can be
applied to deploy an instance to act as a smart proxy to address
different problems, while requiring no programming experience
or effort. We show for three different use cases that in addition
to the simulation benefits, STM brings scalability, reliability, and
safety to the existing IoT systems, making the adoption of IoT
feasible for a wider audience.

Index Terms—Internet of Things, Web of Things Thing De-
scription, CPS, System Design, Simulation

I. INTRODUCTION

One of the principal goals of the Internet of Things
(IoT) is bringing Internet-layer connectivity to electronic
devices. The already existing variety of electronic devices,
thus, results in a large variety of IoT devices. In return, one
can expect IoT devices to have different properties such as
power consumption, processing power, supported protocols
etc. This is commonly referred to as fragmentation and
discourages building systems of IoT devices that originate
from different domains, even though the integration of het-
erogeneous devices is another principal goal of the IoT.
The Thing Description (TD) standard [1] was introduced

recently as an open description format to solve the fragmenta-
tion and interoperability problem. TD can be used to describe
IoT devices with communication protocols of any kind and
is human-readable as well as machine-understandable. The
TD is not a standard to replace other IoT standards but it
makes it possible to describe them through syntactic and
semantic information. TD abstracts capabilities of devices as
interactions, such as reading a temperature or moving a robot,
and dictates how a user of this device should execute these
interactions. This way, one can communicate and, thus, use
an IoT device only by reading its TD.
Problem Statement. TD enables an easier system devel-

opment in case the physical devices can be trusted and are
available. However, this assumption can often not be met
when we observe the life cycle of an IoT device at different
stages of a system. More specifically:

With the support of the Technische Universität München – Institute for
Advanced Study, funded by the German Excellence Initiative and the
European Union Seventh Framework Programme under grant agreement
n◦ 291763.

{ }

{ }Con�iguration

Shadow 
Thing

{ }
{ }

Development

Runtime

Diagnosis
...

Physical Thing

Gateway

based on

Figure 1: The Shadow Thing Method (STM) enables no-code deployment of
a virtual instance of an IoT device based on the Thing Description of the
device and a configuration file. The configuration file allows the STM to be
used in different stages of the life cycle of an IoT device.

• System developers are facing challenges when the physi-
cal device is not available during the development phase,
making it difficult to develop the control application that
heavily relies on the communication with the device.
Additionally, until the system-level application code is
stable, it would be unsafe to interact with the physical
device even if it is available.

• TD is used to describe existing IoT devices which can
have resource and network constraints or can exhibit
unsafe behavior in different cases. Since the device code
is not always modifiable, there is a need to handle this
behavior while not introducing additional implementa-
tion effort for the system developers.

Contributions. The aforementioned problems share the
common need for a Shadow Thing as shown in Figure 1,
an easy-to-deploy virtual device instance that acts like a
real one for the system developer in different stages of the
system life cycle. In this paper we introduce the No-Code
Shadow Things Deployment Method (STM) that allows to
deploy such Shadow Things as a smart proxy from a TD
with different configurations according to their use in the life
cycle of a system while not requiring any programming effort.
Consequently, this paper has the following contributions:

• We introduce a method to deploy virtual IoT devices
with various protocols and properties, explained in Sec-
tion III as the Shadow Thing Method and its corre-
sponding publicly available implementation, introduced
in Section IV.

• Variations of the STM are presented to fulfill different
purposes, according to the specific use case such as sim-
ulation, support, or adaptation, introduced in Sections
III-A, III-B and III-C.

• Demonstration and evaluation of three different use
cases of the STM; to provide a simulation environment
for IoT developers and researchers, to support the device



{ }

init

error calib.

meas. HTTP

CoAP

MQTT
...

{ }

{payload}

Figure 2: Thing Description abstracts the Thing logic and hardware (a) while
describing payload and protocol related information to the Consumers. Here,
one can see how an interaction handler would work, from protocol layer (c)
to the logic (a).

in runtime by increasing scalability and to adapt the
device to different applications by changing the protocol
or security mechanisms, introduced in Section V.

Section VI discusses related work and Section VII con-
cludes.

II. THING DESCRIPTION

The first version of TD has been introduced in September
2017 by the Web of Things (WoT) Working Group of the
World Wide Web Consortium (W3C) after years of research
on how to bring Internet and Web technologies to the device
level. In this section, we shortly explain this standard which
sits at the core of the Shadow Thing Method (STM), by
focusing on its relevant details.
TD abstracts individual capabilities into interaction affor-

dances, where an Exposed Thing2 is offering interactions for
Consumers such as another Thing, Web browser etc. These
interaction affordances are formally defined in [2] and [3],
and grouped into three categories:

• Property: Exposed state of the Thing that can be read
(like sensor data) or written to (like a configuration).

• Action: Functions of the Thing that can be invoked in
order to trigger a physical process (like moving a robot).

• Event: Event source that can send asynchronous mes-
sages to the Consumers (like a button pressed alert).

These interaction affordances are shown in the TD of
Listing 1, which describes the capabilities of a ventilator. A
Consumer of this TD is able to read the rotation speed by
reading the property rotationSpeed (lines 7-12), request the
fans to rotate with a given speed (lines 16-21) and listen
to an emergencyButton event (lines 24-26). As seen in this
example, the interactions have the forms field which contains
all of the protocol-specific information such as methods or
Uniform Resource Identifiers (URIs) whereas the remaining
parts give the relevant information for the application, such
as the payload description.
An interaction handler uses a specific protocol, as shown

in Figure 2.c, and is the actual code that responds to requests.
Depending on the programming language, hardware platform
or framework, the interaction handlers can be implemented
in different ways which are, however, abstracted with a TD
using the protocol bindings explained in [4]. In Figure 2, any
communication request to the Exposed Thing will go through
the protocol layer (c), deliver a payload (b), if necessary,

2When the word Thing is used with a capital letter, a Thing means an object,
either virtual or physical, that can be communicated with.

1 {
2 "@context":"https://www.w3.org /2019/ wot/td/v1",
3 "title":"ConnectedVentilator",
4 "base":"http://192.168.0.2:8080/"
5 "properties":{
6 "rotationSpeed":{
7 "type":"integer",
8 "minimum":0,"maximum":1200,
9 "readOnly":true,
10 "forms":[{"href":"props/rotationSpeed",
11 "htv:methodName":"GET"}]
12 }
13 },
14 "actions":{
15 "rotate":{
16 "input":{"type":"integer",
17 "minimum":0,"maximum":1200}
18 "forms":[{"href":"actions/rotate"}]
19 }
20 },
21 "events":{
22 "emergencyButton":{
23 "forms":[{"href":"coap://192.168.0.2:5683/ button"}]
24 }
25 }}
Listing 1: Example of a simple Thing Description. It describes a ventilator
that exposes the rotation speed as a property, rotate command as an action
and the press of the emergency button as an event.

to the Thing’s logic layer (a) and the Exposed Thing will
respond with a payload that follows the same path back. TD
can describe the layers b and c, however the Thing logic
(layer a) is not exposed to the Consumers. STM relies on the
principle of layers and uses the interaction descriptions of a
TD in order to create the interaction handlers.

III. OUR SHADOW THING METHOD

As mentioned in Section I, IoT system developers need an
easy-to-use but flexible way of deploying virtual instances
of IoT devices that have the same capabilities as a physical
device according to their TD. STM addresses this problem
from the Consumer point of view and creates a virtual
Exposed Thing with the three layers shown in Figure 2 based
on a given TD. According to the use case of the developer, the
Thing logic and protocols (Figure 2, layers a and c), which are
hidden behind the TD, are created differently and give our
method its flexibility to be applied to different use cases. This
flexibility makes it different from our previous contribution
[5], where the layer a and c were used for the single purpose
of creating a virtual instance of the Exposed Thing. In this
section, we detail how the core of the STM works and how
this core principle can be extended for different use cases.
The STM’s core principle is the automatic creation of

interaction handlers based on a TD. For example, an inter-
action handler for the property rotationSpeed of Listing 1
would return an integer between 0 and 1200 for an HTTP
GET request to the URI in the value of href of line 11. As
shown in Listing 1, the capabilities of these devices are bound
specifically to them via URIs in the base and forms fields
of the TDs. However, as recommended in [6], Consumer
applications can and should be written without hardcoded
URIs, protocols or security configuration, which allows the
Consumer application code to be programmed purely with
the application logic. Consequently, with the STM we can
generate the interaction handlers that are described the same
way as in the original TD but with different URIs, protocols
or security mechanisms.



A. Device Simulation in the Development Phase

The STM can be applied to cases where the physical device
is not available but its TD can be acquired in advance. We can
imagine a system developer who can interact with one phys-
ical Exposed Thing but not with another one which is still
being delivered. In this case, the system developer can deploy
a virtual Exposed Thing from its TD without requiring any
programming effort. This Exposed Thing would respond to
interaction requests with data corresponding to the structural
schemas and value ranges specified by its TD and support
the described protocols.
As the layer a of Figure 2 cannot be described in a TD,

the data would appear random by default. Optionally, the
interaction handlers created by the STM can be overridden
with device behavior by a developer to obtain a more reliable
representation of the physical device, such as simulating how
the temperature revolves over time with a certain mathemat-
ical function. This is commonly referred to as Digital Twin
and adding more information into the TD standard - such that
a Digital Twin model can be described directly in the device
TD - is currently under discussion in the standardization
group3. This would enable the generation of a more real-life
behavior by the STM.

B. Smart Proxy for Supporting the Physical Device

During the runtime of systems, resource-constrained IoT
devices are unable to scale up like the dedicated servers we
are familiar with on the Internet. That is why gateways are
proposed to handle the load of these devices. STM can be
automatically deployed in such gateways to bring scalability
and reliability from the point of view of a Consumer appli-
cation, where a high number of requests can be handled and
intermittent dropouts of the physical Exposed Thing can be
hidden. Compared to the previous case, here, the STM works
with the presence of a physical device.

The interaction handlers are created according to the
core principle but the actual data of the physical Exposed
Things are cached and relayed to the Consumers. The action
affordances of physical Exposed Things generally interact
with the physical world, such as rotating the ventilator. Thus,
in the smart proxy, we do not cache the action affordance
inputs or outputs since doing so would lead to consequences
in the physical world, unknown to the Consumers.
Our approach is different from the traditional caching

approaches, where generally safe and idempotent requests
from the protocol point of view (such as HTTP GET) are
cached. Differently, STM uses the interaction affordance se-
mantics rather than the protocol semantics, where an HTTP
GET request that invokes an action would not be cached.
Furthermore, this allows us to have a protocol independent
caching mechanism where one can cache for an HTTP based
Exposed Thing as well as one with MQTT, CoAP, or any
protocol described by the WoT Binding Templates [4]. In
Figure 3, layer a2, we illustrate this use case.

3https://github.com/w3c/wot/blob/master/charters/
wot-wg-charter-draft-2019.html

{ }

HTTP

CoAP

MQTT
...

{ }

{payload}

{ }

{ }

Device Simulation

Smart Proxy

Safety, Security Support

{payload}

Shadow Thing

Caching

+
Device 

Behavior

Figure 3: Shadow Thing Method allows the automatic creation of interaction
handlers from a given Thing Description. Parts a1, a2 and a3 constitute the
different use cases of the method, which can be chosen according to the
needs of the system developer.

C. Adapting Physical Device with Protocol, Safety, and Security
Features
Similar to Section III-B, here we explain another use case of

the STM together with a physical Exposed Thing. Differently,
STM can be used to automatically add features to a physical
Exposed Thing or change its features without changing its
source code. More precisely, by deploying a Shadow Thing
between the physical Exposed Thing and the Consumer, one
is able to add input/output sanitization, protocol translation,
or to add/remove security mechanisms.
Input/Output Sanitization: As noted in the TD specifica-

tion via multiple assertions4, the payload structures of the
data input and output should be respected by the Exposed
Thing and the Consumers. However, this does not imply
that there is always the verification of these data in the
implementation or that a verification will work in all states
of the physical device, such as in the presence of an error.
This safety issue can be mitigated by deploying the STM on

a gateway where interaction handlers can be automatically
supported with input and output validation. For example, re-
jecting unauthorized data inputs sent to the physical Exposed
Thing or detecting invalid data sent by the physical Exposed
Thing and informing the Consumer. This allows automatic
addition of a safety layer to the existing IoT devices.
Protocol Translation: TD abstracts the interaction affor-

dances from the underlying protocol. This means that a
developer who would write a Consumer application with the
Scripting API, would not need to write protocol specific code.
However, not every Scripting API implementation (or any
Consumer application) necessarily comes with the protocol
stack the Exposed Thing requires.
By using this abstraction layer, we can use STM to trans-

late the protocol of an Exposed Thing to another protocol
that the Consumer application supports. For example, if
the Exposed Thing requires a CoAP GET request to read
a property affordance, we can automatically translate this
protocol requirement to an HTTP GET request that can
be then used with regular Web Browsers. Similarly, if the
Exposed Thing requires an HTTP long polling mechanism to
observe events, which is not suitable for resource-constrained
devices or which can be seen as a Denial of Service attack

4Assertion IDs are server-data-schema and client-data-schema in https://w3c.
github.io/wot-thing-description/testing/report.html

https://github.com/w3c/wot/blob/master/charters/wot-wg-charter-draft-2019.html
https://github.com/w3c/wot/blob/master/charters/wot-wg-charter-draft-2019.html
https://w3c.github.io/wot-thing-description/testing/report.html
https://w3c.github.io/wot-thing-description/testing/report.html


Configuration Number of Exposed Things Average(s) Maximum (s) Std Deviation (s)

4CPU Threads
8GB RAM

4 000 (4k) 0.76 0.80 0.03

40 000 (40k) 3.88 4.02 0.08

400 000 (400k) 40.32 41.52 0.61

1 000 000 (1M) 111.03 112.63 0.90

32CPU Threads
64GB RAM

1 000 000 (1M) 32.64 32.92 0.17

2 000 000 (2M) 69.51 70.01 0.31

16 000 000 (16M) 544.42 560.62 13.63

32 000 000 (32M) 595.21 600.61 3.67

Table I: Times taken to instantiate a given number of Exposed Things is recorded and presented in this table by average, standard deviation and maximum.

from the network provider’s point of view, we can translate
it to an MQTT subscription where even the broker can be
started in a gateway for the given device.
Modifying Security Mechanisms: Existing IoT devices

do not always come with security features or might get
outdated and expose vulnerabilities. STM makes it possible
to automatically add a security layer, customizable per device
that can be updated without interfering with the source code
of the devices. The security requirements are described in
a TD with the securityDefinitions keyword, where it is
possible to describe mechanisms such as Basic Authentica-
tion, Bearer Tokens or more. These mechanisms are applied
in the Consumer application in an initialization stage and
not appear in the application logic, meaning that modifying
the security mechanism of a physical Exposed Thing (with
the Shadow Thing) should not require any change in the
application logic.
With STM, we can add a security mechanism to an

Exposed Thing that comes without one. This is a common use
case where a device meant for local networks coming without
any security mechanisms can be secured through a gateway
where the STM is applied. For the given id of the physical
Exposed Thing, the configuration of STM defines the desired
security mechanism. This way, STM brings security support
in a granular way that can be automatically deployed.

IV. IMPLEMENTATION
STM is implemented as a software package in node.js

runtime under the name shadow-thing5,6. We are using the
thingweb.node-wot library7 of the Eclipse Thingweb project
[7] which provides the support for different protocols as well
as for processing a TD. This library comes with the support
for HTTP(S), CoAP and MQTT protocol bindings, with the
development of more bindings in progress.
Our implementation comes with the core contribution of

STM and the extensions for the cases mentioned in Sections
III-A, III-B and III-C. For its different use cases, shadow-thing
can be run in a single or in a multi-threaded mode, the latter
being recommended for deploying a large amount of virtual
instances. When deploying multiple instances, it is possible
to create the virtual instances in Docker containers, which
allows easy deployment with different resources given for
each container.
In addition to creating an Exposed Thing, we have also

implemented a scalable client pool that can be used to stress
test any Exposed Thing with a TD. This is also supplied with
the shadow-thing package.
5https://www.npmjs.com/package/shadow-thing
6We would like to acknowledge the work done by Hassib Belhaj Hassine
and Teck Wan Wong.

7https://github.com/eclipse/thingweb.node-wot

V. CASE STUDY

In this section, we are presenting three different case
studies for the use cases mentioned in Section III.

A. Device Simulation
As mentioned in Section III-A, the basic use case of the

STM is the deployment of virtual Exposed Things from a
TD. After briefly demonstrating the simulation of a single
device, we will show how our method is scalable to simulate
thousands of devices.
1) Single Device Simulation To demonstrate basic simula-

tion, we are taking the TD shown in Listing 1 which has
multiple protocols as well as all of the different interaction
affordances. We are taking the point of view of a Consumer
application developer who needs to experiment with different
Exposed Things and verify whether it fulfills the assertions
of the TD specification. After installing the shadow-thing
package simply by npm install command, it can be started
via npm start {tdlocation}. The developer is met with a
default configuration that can be modified to adjust the event
emission intervals or the protocol.
From the Consumer application, once its TD is consumed,

shadow-thing provides the same application layer logic
where all of the interactions and their corresponding opera-
tion types are present. As mentioned in Section IV, the values
emitted by events, read from properties and action outputs
are respecting the data schema but their values appear
random. Thus, one can test if the Consumer application is
robust against all data types and can execute all interaction
affordances with required protocols.
2) Multi-device Simulation More interestingly, the

shadow-thing is very lightweight and can be scaled up
to thousands of virtual instances. We see an increasing
amount of research on the WoT as well as the semantic
technologies around it. With our shadow-thing package,
we want to provide the academic community a simulation
environment where they can evaluate their methodologies
such as searching for a specific interaction in a group of TDs
or composing and deploying a system of Exposed Things. In
such cases, the validity of the method needs to be supported
with how well it can scale and therefore requires large
number of Exposed Things. Thus, here we are evaluating
shadow-thing on its capability to scale by focusing on the
number of Exposed Things that can be deployed.
In order to reduce the amount of variables for evaluation,

we are excluding the MQTT protocol since it is highly
dependant on the broker, where the actual message delivery
is happening. We are varying the RAM and amount of CPUs
that can be allocated in order to see how many devices can
be simulated by a typical developer’s laptop as well as a

https://www.npmjs.com/package/shadow-thing
https://github.com/eclipse/thingweb.node-wot


dedicated server. Our evaluation is running on a computer
with the following specifications:

• Hardware: Intel Xeon Gold 6130 with 16 cores and
128GB RAM

• Operating System: Ubuntu 18.04 LTS
• Software: Docker 18.09.7, with node:10.16.0-alpine
Evaluation Method: We give the Docker container and

the node.js instance the same amount of RAM. We note
the amount of time taken to generate all Exposed Things
for different configurations of RAM and CPU count. We
repeat the experiment 10 times for each configuration. It is
important to precise that the generated instances are fully
functional Exposed Things that can accept requests from
Consumers and that a new Exposed Thing does not replace
the previous ones (i.e. no recycling). Since the multi-threaded
version of shadow-thing provides better results, we are
running all of our experiments in this mode but it is possible
to create all Exposed Things in a single thread. The results
of our evaluation is grouped in Table I.
Observations.We observe that our method scales to a high

number of instances created as long as the resources are
not fully used. This means that we do not have an inherent
scalability limitation in the shadow-thing architecture. More
importantly, we can generate a high number (such as 1 mil-
lion) of Exposed Things in under 2 minutes, in a container
configuration with 4 CPU threads and 8 GB RAM, which can
be considered as a common configuration among researchers
and developers. For this configuration, our experiments with
more than 1 million Exposed Things could not be completed
due to insufficient RAM, which gives a practical upper limit
of deployable Exposed Things.
To deploy a higher number of Exposed Things, one would

need to dedicate more resources. We can achieve 32 million
Exposed Things with a 32 thread, 64 GB RAM configuration,
where the deployment took 10 minutes in the worst case.
Additionally, we observe that when the number of allocated
CPUs is low or if the RAM starts getting fully occupied, the
generation slows down, with RAM having a more significant
impact. This can be seen in cases when we try to deploy
16 000 Exposed Things, where a 15 times slower instantiation
occurs when using 100 MB of RAM instead of 1 GB.

B. Device Support in Runtime
In this use-case, we deploy shadow-thing as a smart proxy

as mentioned in III-B and illustrated in layer a2 of Figure 3
to help with scalability issues of IoT devices. The setup is
with the following devices in the same WiFi network:

• An ESP8266 based light sensor that has a property
affordance for light intensity in its TD. Implementation
of this Exposed Thing is publicly available8.

• A Raspberry Pi 4 with 1 GB of RAM where
shadow-thing runs in the single-threaded mode. This is
deployed automatically only using the TD of the light
sensor and a caching interval.

• A computer9 running an adjustable amount of Con-
sumers that can communicate either with the physical

8https://wotify.org/library/ESP%20Light%20Sensor/general
9Hardware: i7-7500U CPU with 16GB RAM. Software: Arch Linux with Linux
Kernel 5.3.12 and node.js version 13.2.0

Time to Read Average (ms) Std. Deviation (ms)
Amount of Clients 1 5 10 20 1 5 10 20

Physical Device 38 71 711 n/a 3 66 2846 n/a
Shadow Thing 42 88 122 253 14 177 252 1026

Table II: The times taken to get a response from physical Exposed Thing and
its Shadow Thing for a readproperty request are recorded and presented in
this table by average time, standard deviation and maximum.

light sensor or its Shadow Thing, which is set up by
choosing the TD to consume. This computer simulates
the load that an IoT device can be exposed to.

Evaluation Method: From the computer, we deploy an
increasing number of Consumers that simultaneously read
the intensity property. We have deployed Consumers ranging
from 1 to 20 that read in 1s intervals for 20 consecutive
iterations. Without changing anything in the Consumers, the
same procedure is applied to the physical Exposed Thing
directly and to its Shadow Thing running in the Raspberry
Pi. We have recorded the time taken for each read request and
compiled the results in Table II after removing the outliers.
Observations: Most importantly, we observe that the phys-

ical Exposed Thing is unable to serve more than around 15
clients at the same time, resulting in the n\a fields in the
table. This requires a restart of the Exposed Thing. For a
small number of Consumers (1-5), the response times from
the physical Exposed Thing are better than its Shadow Thing
in average and also deviate less. However, its performance
quickly degrades after 10 Consumers, resulting in 10 times
worse average reading times than 5 Consumers. Shadow
Thing initially performs worse, which is due to the extra
communication needed with the physical Exposed Thing.
However, this disadvantage becomes less apparent with a
higher number of Consumers. Additionally, Shadow Thing
exhibits increasingly more deviation for a higher number of
Consumer whereas the averages increases more linearly.
Our results can be further improved when shadow-thing

is used in a multi-threaded version where the Shadow Things
representing the physical device can be multiplied to keep the
number of Consumers per virtual Exposed Thing low.

C. Device Adaptation
In this last use case, we demonstrate how STM can be

used to adapt the physical Exposed Thing for the Consumers
while requiring no programming. Specifically, we will take
the following Exposed Thing10 with the following attributes:

• Using CoAP protocol for all interactions
• No security mechanism
• No input validation
We configure the shadow-thing to consume the TD of

this device with its CoAP client binding. Since it has no
security mechanism, all interactions are executable by its
Shadow Thing. Then, we enable the HTTP server binding
and re-expose the TD with HTTP protocol. Additionally, we
add the BasicAuth security mechanism by configuring an id
and password. shadow-thing comes with input validation
enabled which results in the data sent for invoking actions
and writing to properties being verified. In the case of invalid
inputs, shadow-thing responds with an error message to

10https://wotify.org/library/Motor%20Controller%20(Pololu%20TB9051FTG%
20Dual)/thingdescription

https://wotify.org/library/ESP%20Light%20Sensor/general
https://wotify.org/library/Motor%20Controller%20(Pololu%20TB9051FTG%20Dual)/thingdescription
https://wotify.org/library/Motor%20Controller%20(Pololu%20TB9051FTG%20Dual)/thingdescription


Exposed Thing Shadow Thing Consumer

Initialization

Configure: security,
address, protocol

CoAP - fetch TD

CoAP - TD

Runtime

Consume TD;
Expose

HTTP: readproperty (GET)

CoAP: readproperty (GET)

motorSpeed : 12

motorSpeed : 12

HTTP: invokeaction (POST)
targetSpeed : -90

Invalid Input

{ }
TD

Figure 4: shadow-thing can be set up to translate protocols, change security
mechanisms and to verify the inputs sent by the Consumers. Here, an
Exposed Thing using CoAP protocol can be automatically connected to a
Consumer using HTTP protocol by passing through the Shadow Thing.

the Consumer. This case study is fully illustrated in the
UML Sequence Diagram in Figure 4. The left side represents
communication with the physical Exposed Thing through
CoAP protocol and no security, whereas the right-hand-side
of Shadow Thing communicates with HTTP, with security
mechanism and input validation.
Observations: We observe that the deployed Shadow

Thing adds a similar delay in communication as in the single
Consumer case of Table II. Since the mapping of one protocol
to the other happens through the in the initialization stage,
the protocol conversion does not add any additional delay.
The differences we see are due to the security mechanism
that requires a certificate to be transmitted as well. This delay
comes with the advantage of more secure access to the device
where only Consumers with the correct security credentials
can interact with the physical Exposed Thing. Finally, we
note that such adaptation requires no programming effort
and that it can be used also for adapting legacy devices to
work with new systems. One can even think of a use case
in an industrial context where older devices with protocols
like Modbus can be adapted via the STM to newer protocols
and architectures, such as OPC-UA. Similar to this use-case,
the shadow-thing can accomplish this with no programming
effort if the protocol bindings for Modbus and OPC-UA are
implemented.

VI. RELATED WORK
Our STM can be seen as a modern variation of the well

established Proxy Pattern from [8]. Compared to this original
pattern, we rely heavily on the TD standard and assume IoT
devices. However, in recent years, IoT device virtualization
has sparked interest from industry and academia.
Amazon’s Device Shadow Service [9] has been used also in

academia in the context of smart cities in [10]. That method,
however, relies on a software that has to run on the cloud and
that is accessible only to users with a connection to the cloud.
Additionally, it is currently constrained to MQTT and HTTP

protocols and uses a JSON document that is less flexible than
the TD standard to define a device shadow.
[11] introduces DPWSim, a simulation toolkit based on the

DPWS standard. In addition to using a different standard, it
is a pure simulation toolkit. While the STM can be used also
as a pure simulator, it can act as a proxy in the presence of
a real device.
Mozilla’s Virtual Things Adapter [12] can also simulate

devices and uses a description format similar to the TD. It
provides a visual interface for configuration and integration
to the Web Things ecosystem. However, it is bound to run
on the Mozilla WebThings Gateway, whereas our implemen-
tation can run on any device that can run the node.js runtime
environment, such as every computer and server as well as
on many single-board computers and smartphones.

VII. CONCLUSION
In this paper, we have introduced a novel approach called

Shadow Thing Method (STM) to create virtual instances
of IoT devices in the WoT context. It is easy to deploy
these instances based on the TD of the device with no
programming effort. We have applied our method with its
publicly available implementation to the development and
runtime phases of IoT systems where we have showed how
to use STM to create a simulation, a smart-proxy and a device
adaptor. In three case studies, we have illustrated how STM
enables scalable, reliable, and safe IoT devices by adding a
layer between the Thing and its Consumer.

REFERENCES
[1] S. Kaebisch, T. Kamiya, M. McCool, V. Charpenay, M. Kovatsch, “Web of

Things Thing Description”, W3C, Tech. Rep., 2020. [Online]. Available:
https://www.w3.org/TR/2020/PR-wot-thing-description-20200130/

[2] E. Korkan, S. Kaebisch, M. Kovatsch, S. Steinhorst, “Sequential Behav-
ioral Modeling for Scalable IoT Devices and Systems”, in 2018 Forum
on Specification & Design Languages (FDL), 2018, pp. 5–16.

[3] M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K.
Toumura and K. Kajimoto, “Web of Things Architecture”, W3C,
Tech. Rep., 2020. [Online]. Available: https://www.w3.org/TR/2020/
PR-wot-architecture-20200130/

[4] M. Koster and E. Korkan, “WoT Binding Templates”, Tech.
Rep., 2020. [Online]. Available: https://www.w3.org/TR/2020/
NOTE-wot-binding-templates-20200130/

[5] H. B. Hassine, E. Korkan, and S. Steinhorst, “Virtual-Thing: Thing
Description based Virtualization”, in Second W3C Workshop on Web
of Things, June 2019.

[6] Z. Kis, D. Peintner, J. Hund, K. Nimura, “Web of Things (WoT)
Scripting API”, W3C, Tech. Rep., October 2019. [Online]. Available:
https://www.w3.org/TR/2018/WD-wot-scripting-api-20191028/

[7] D. Peintner, M. Kovatsch, C. Glomb, J. Hund, S. Kaebisch, V. Charpenay,
“Eclipse Thingweb Project”, 2018, [Online; accessed April 21, 2019].
[Online]. Available: https://projects.eclipse.org/projects/iot.thingweb

[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design patterns: Elements
of reusable object-oriented software”, Reading, MA, p. 207, 1995.

[9] Amazon Web Services, Inc. (2020) Device Shadow Service for
AWS IoT. [Online]. Available: https://docs.aws.amazon.com/iot/latest/
developerguide/iot-device-shadows.html

[10] W. Tärneberg and V. Chandrasekaran, M. Humphrey, “Experiences
Creating a Framework for Smart Traffic Control Using AWS IOT”, in
Proc. of UCC ’16. New York, NY, USA: ACM, 2016, pp. 63–69.

[11] S. N. Han, G. M. Lee, N. Crespi, K. Heo, N. Van Luong, M. Brut, and
P. Gatellier, “DPWSim: A simulation toolkit for IoT applications using
devices profile for web services”, in 2014 IEEE World Forum on Internet
of Things (WF-IoT), March 2014, pp. 544–547.

[12] Mozilla Foundation. (2020) Mozilla WebThings Gateway Virtual
Things Adapter. [Online]. Available: https://github.com/mozilla-iot/
virtual-things-adapter

https://www.w3.org/TR/2020/PR-wot-thing-description-20200130/
https://www.w3.org/TR/2020/PR-wot-architecture-20200130/
https://www.w3.org/TR/2020/PR-wot-architecture-20200130/
https://www.w3.org/TR/2020/NOTE-wot-binding-templates-20200130/
https://www.w3.org/TR/2020/NOTE-wot-binding-templates-20200130/
https://www.w3.org/TR/2018/WD-wot-scripting-api-20191028/
https://projects.eclipse.org/projects/iot.thingweb
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://github.com/mozilla-iot/virtual-things-adapter
https://github.com/mozilla-iot/virtual-things-adapter

