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ABSTRACT
Time synchronization is paramount for communication in
Internet of Things (IoT) networks. Existing synchronization
protocols in the IoT are designed to be accurate, energy-
efficient and scalablewith absolute trust on the time source(s).
If a byzantine node becomes a time source, it can cause syn-
chronization errors with false time, leading to system mal-
functions or network crashes. In this paper, we introduce
C-Sync: a clustering time synchronization protocol for de-
centralized IoT networks that incorporates resilience against
byzantine nodes. We show that C-sync achieves a worst-case
synchronization accuracy of a few tens of microseconds (µs).

KEYWORDS
Time synchronization, IoT, Fault detection, Byzantine Faults

1 INTRODUCTION
Communication is the primary source of energy expendi-
ture among resource-constrained Internet of Things (IoT)
nodes [1]. Time synchronization among the nodes aids in
energy conservation of a node by keeping track of the ex-
act time to communicate with other nodes. This allows the
nodes to remain in sleep mode for the remaining duration.

In general, synchronization protocols such as flooding [1,
2], global consensus (common logical time) and compensa-
tion methods [3, 4] are designed to improve one or more
combinations of accuracy, energy efficiency and scalability.
Flooding mechanisms have a large quantity of messages ex-
changed before synchronization is complete, leading to high
energy consumption. Flooding is a process of rapidly trans-
mitting received information immediately upon message re-
ception. Although consensus protocols are resilient to faults,
they take longer to converge with less energy efficiency and
have increasing drifts as the network scales. However, the
above protocols are not resilient against byzantine nodes.
Synchronizing based on themalicious time information could
compromise the network.
In this paper, we present a synchronization mechanism

called Clustering-Synchronization (C-Sync) for a decentral-
ized IoT network. C-sync uses clustering to achieve energy
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Figure 1: (a) C-sync protocol with two phases of operation.
(b) Clustering phase with state transitions. (c) Convergence
and consensus phase with TDMA communication.

efficiency and resilience to faulty nodes in the system. Clus-
tering techniques are known to reduce the energy expendi-
ture of the nodes and provide routing through representative
nodes called Cluster heads (CH). Since communication in
C-sync involves only CH nodes, the number of messages
exchanged is reduced significantly compared to other pro-
tocols. Our preliminary results show that C-sync achieves
a worst-case synchronization error of 37 µs in a multi-hop
network of up to 10 hops.

2 C-SYNC
C-sync protocol operates in two phases (clustering and con-
sensus) and adopts a slotted operation mode where synchro-
nization is performed in fixed time slots while applications
are executed in the remaining time slots as shown in Figure 1.

Clustering Phase
In the first phase of C-sync, the nodes are grouped into clus-
ters. The clustering process is a state machine of 3 states:
neighbor discovery, election and connection as indicated in
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Figure 1b. Nodes become aware of their neighboring nodes
in the neighbor discovery state. Time information is added to
the messages to achieve an implicit synchronization during
this state similar to Gradient Time Synchronization Protocol
(GTSP) [3]. GTSP achieves time synchronization by averag-
ing neighbor time information and provides resilience for
the clustering phase (C-GTSP). During the election phase, a
representative node is chosen as a cluster head (CH) based
on the maximum degree (number of connections) of a node.
Lastly, the connection state selects a representative bridge
node (nodes that belong tomultiple clusters) as cluster bridge
(CB) and other bridge nodes as supervision cluster bridges
(SCB) to ensure inter-cluster connectivity and resilience.

Consensus Phase
Consensus Control (Cons-Ctrl) is the second phase of C-sync
which repeats periodically after certain time slots to main-
tain the synchronization. The cluster heads exchange time
information among each other to find local centers of their
neighborhood. Local centers are CHs at a configurable num-
ber of hops from the edge of the network. The configuration
limits the maximum number of hops before which the con-
sensus is reached. Local centers bound the maximum error
across the network. The time information of the local cen-
ters are propagated back to the CHs in the reverse direction
after the convergence. The order of the CH receiving infor-
mation is the reverse of the order of finding local centers
and hence, the TDMA slots for each of the cluster is created
accordingly for the synchronize and supervise phase. Thus,
the protocol scales very well for larger network sizes without
additional loss of energy and additional delay for consensus.
However, given the dynamic nature of the network, some
nodes may fail or new nodes may be added to the network. If
there are significant changes (e.g. change in CH), clustering
is triggered again to establish new clusters with the optional
correction state of the consensus phase in Figure 1c.

Detection of Byzantine nodes. The elected cluster bridge
(CB) and supervision cluster bridge (SCB) nodes act as su-
pervision nodes to monitor the broadcast data of CH nodes
to their cluster member nodes. SCB also ensures reliable and
accurate information propagation during consensus. In the
case of a byzantine fault, e.g. the CH sending corrupt time
information, CBs and SCBs intervene and share the legiti-
mate value of time. As CBs are connected to other clusters,
they further forward the valid time information along the
network path. Hence, the impact of a byzantine event can
be detected and contained within a single cluster.

3 PRELIMINARY RESULTS AND CONCLUSION
In this section, we present the experimental setup and initial
results of the C-sync protocol. For experiments, we use the

Contiki software with a simplified communication stack to
minimize software delays, deployed on the Tmote Sky [5].
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Figure 2: Comparison of synchronization error of GTSP and
C-sync for a ring topology with 10 hops.

As an initial experiment, we compare the synchronization
error between GTSP and C-sync (inter-cluster synchroniza-
tion) over a ring network of 10 hops. GTSP uses neighbor
averaging while C-sync uses convergence to find local cen-
ters and, further, consensus to synchronize. The results of
the experiment are shown in Figure 2.
The synchronization error increases with hop distance

for GTSP and is in agreement with the results in [3]. It is
observed that the error for C-sync increases till the local
center is found (6 hops) and reduces beyond. This is due to
equal dispersion of information across both sides of the local
center, leading to nodes having similar error as their hop
distance from the center. The variation in average error is
lower since the deviation of synchronization error from the
average can be lower or higher. As local centers are found
again as the network scales, the synchronization error is
bounded at 37 µs .
In summary, the C-sync time synchronization protocol

is presented in this paper and it is shown that the worst-
case synchronization error is bounded. As the current results
show promising potential, we aim to further improve the
protocol and test its performance for byzantine faults.
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