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Abstract. As the number of devices participating in the Internet of
Things (IoT) rapidly grows, the challenge of interoperability across IoT
platforms becomes more apparent. In order to limit fragmentation of IoT
development and improve compatibility, web mechanisms and technolo-
gies can be applied, forming the Web of Things (WoT). The World Wide
Web Consortium (W3C) supports the standardization of WoT by provid-
ing a platform-independent specification called Thing Description (TD).
It is a machine-readable document that semantically describes meta-
data, interactions and interfaces of a device, indicating its functionality.
However, it does not provide any information about timing performance,
which is crucial for the design of optimal system compositions. In this
paper, we present W-ADE, a development environment for WoT and
TD that facilitates manual timing measurements and automated tim-
ing performance benchmarking of Thing interactions, merely with a TD
available. Timing performance is guaranteed systematically, hence allow-
ing optimization during the design phase of Thing mashups. Our eval-
uation shows that with 99.9% confidence W-ADE can predict average
interaction timing performance within a range of +/- 5%, and is able
to provide approximate network-independent static timing performance
benchmarks for interaction affordances to 99.93%. To enable the design
of heterogeneous IoT applications based upon these timing requirements,
a proposal on how to annotate a TD based on the measured performance
data is made.

Keywords: Web of Things · Thing Description · Timing Performance ·
Performance Benchmarking

1 Introduction

The Internet of Things (IoT) is a system of physical devices, such as sensors
or actuators, which are able to communicate over various IP-level networking
interfaces and eventually can be connected to the Internet. These smart things,
also referred to as Things, enable us to monitor and interact with the physical
world in a fine-grained spatial and temporal resolution. [1]
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Fig. 1. The Web of Things (WoT) development environment W-ADE is a standalone
application based upon the W3C WoT Architecture [6]. Its core includes a WoT run-
time, protocol bindings, a Thing Description (TD) parser, and a timing performance
benchmarking functionality. It can be extended with further plugins. W-ADE takes a
TD as input and is able to return it, annotated with timing performance benchmarks.

However, limitations become visible as soon as multiple Things from diverse
vendors are integrated into one system. As universal application protocols and
platform-independent standards are missing, companies come up with their own
solutions, leading to fragmentation of IoT development. Thus, it requires com-
plex integration work, technical expertise, and it is mostly mandatory to have
real devices available to build heterogeneous system compositions. [2]

The World Wide Web and its associated technologies are capable of pro-
viding solutions for the fragmented progression of IoT and offer the foundation
for the next steps beyond basic network connectivity. Hence, web mechanisms
are nowadays used to facilitate communication with IoT platforms - indepen-
dent from their underlying technologies. This approach of integrating real-world
devices into the Web is called the Web of Things (WoT). [3, 4]

The World Wide Web Consortium (W3C) is seeking to standardize this web
layer for IoT to enable effortless integration of heterogeneous devices. The core
concept in this process is the Thing Description (TD) specification [5], further
discussed in Sec. 2. A TD is an abstraction of a Thing’s capabilities: It seman-
tically describes its metadata, interfaces, and available protocols. It acts as ex-
posed interface, facilitating the communication with the described IoT instance.

1.1 Problem Statement

IoT applications are often composed of not only a single but multiple devices,
also referred to as mashups. The TD facilitates to design them without hav-
ing the actual Things or other device documents (e.g. system specification) at
disposal. To create reliable TD-based mashups, it is inevitable to have data on
timing performance of the included Things. Timing is defined as the sum of
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the round trip delay time (RTD) plus the required processing time of the client
application and Thing. Timing performance can therefore be understood as the
required time to interact with a Thing. This is further discussed in Sec. 4. How-
ever, TDs currently do not provide such information. To obtain data on timing
performance, a time-consuming manual process needs to be accomplished: for
each protocol a compatible service has to be started and timing performance has
to be measured manually. Although many qualitative and quantitative studies
on performance of Things have been conducted, as outlined in Sec. 7, they are
rather focusing on protocol or network than general application logic timing
performance. Moreover, there is no tool available, which is capable of measur-
ing timing performance, supports diverse IoT protocols (besides common web
protocols) and is able to generate timing performance benchmarks at the same
time. The question on how timing performance can be measured with only a
client-side application available, as it usually is the case when including third
party IoT devices, also remains unexplored.

1.2 Contribution

In this paper, we introduce W-ADE, the missing foundation block of a develop-
ment and testing environment for WoT, TDs and mashups, illustrated in Fig.
1. It facilitates the automated generation of timing performance benchmarks as
well as annotating a TD with the produced data - with only the associated TD
available. In particular, the following contributions are made:

– In Sec. 3, we enable system designers to invoke single interactions of a Thing
independent from its protocol, based only on its TD, and allow them to
retrieve the associated timing performance.

– In Sec. 4 and 6, we introduce and evaluate a technique to automatically
produce static and dynamic timing performance benchmarks for device in-
teractions, giving estimations for worst-, best- and average-case execution
with confidence interval limits.

– In Sec. 5, we propose a vocabulary set, aligned with the TD specification, to
annotate existing TDs with observed timing performance.

Our approach is then compared to related work in Sec. 7. Finally, conclusions
are drawn in Sec. 8.

2 W3C Web of Things

Our concept of providing information on timing performance evolves around the
Thing Description standard. TD is one of the building blocks associated with
the W3C WoT Architecture [6], which aims to prevent the further fragmentation
of IoT development. The main idea is exposing device capabilities as resources
in a description-oriented fashion through the WoT interface, that is, network
interactions modeled as Properties, Actions, and Events [7]. This information
can then be processed and interpreted by a WoT Consumer, also referred to as
Consumer, an entity, for example another device, browser, or web application
that is able to understand TDs and interact with Things [6].
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Other important building blocks are the WoT Scripting API [7] and WoT
Binding Templates [8]. The Scripting API is the description of a programming
interface, representing the WoT Architecture. It allows scripts to discover, oper-
ate, and expose Things. The WoT Binding Templates provide guidelines on how
to define Protocol Bindings for the description of network-facing interfaces. [8]

2.1 Thing Description

In the WoT context, the TD acts as a defined representation of a Thing and can
be considered the entry point for communication. As TDs are encoded in JSON-
LD [9] format, they are machine-readable as well as human-understandable. The
main goal is to preserve and complement existing IoT standards and solutions [6].
Thus, the TD is not a proposition for a new protocol to replace other standards
but a way to represent them through syntactic and semantic information [10].

One of the TD’s main parts is the interaction model, a formal definition of
mapping application intent to concrete protocol operations [6]. A TD interac-
tion can therefore be understood as the description of a specific capability of
a Thing, representing the data structure, access protocol and access link [10].
Consequently, a TD instance comprises a list of a Thing’s interactions and how
to access them. The interaction affordance is based upon the before-mentioned
WoT paradigms:

– Properties: Exposed values of a Thing that can be read (e.g. sensor data),
written (e.g. to set configuration parameters) or observed.

– Actions: Invoking them triggers physical, possibly time consuming processes
(e.g. moving a robot arm) or functions inside the Thing.

– Events: Used for signaling asynchronous notifications that are triggered by
events (e.g. a pressed button alert).

An example TD including a Action, Event, and Property is shown in List. 2.1.

2.2 Thing Description Based Mashups

As IoT systems usually consist of multiple devices, it is important to shift the
focus towards mashups. Mashups in WoT are associated to digital mashups in
Web 2.0. These describe the technology of composing modularized web applica-
tions to create entirely new services [11]. Respectively, creating WoT mashups
expresses the process of aggregating WoT-enabled Things4 to form new appli-
cations. This is done by chaining together multiple interactions, whereby the
TD provides required information. A smart-home mashup could for example
compose a light sensor and window shutters that are opened as the sun rises.

2.3 Importance of Timing Performance Benchmarking for Mashups

In order to build reliable physical mashups, a way to analyze, describe, and gen-
erate timing performance benchmarks for included Thing interactions has to be

4 A Thing, that is accessible via its TD and can be consumed.
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found. Knowledge on timing performance is especially important if involved in-
teractions trigger physical processes. As these executions can take a considerable
amount of time. Furthermore, when the sum of different interactions influences
the total mashup time, it is highly relevant to be able to extract data on their
individual timing performance from their description. This becomes even more
valuable when a mashup is more complex, due to including many interactions or
having dependencies on each other’s responses. Timing performance information
is also required during the mashup’s design phase. As then included Things might
not be available and individual interaction request times cannot be measured.

Another example for the importance of the availability of timing performance
benchmarks in a TD is, when a client application persistently requests data from
a Thing (polling). It could send requests in a shorter time period than the device
needs to process. This potentially leads to malfunctions or to a system overload.
However, the TD does not yet include any performance related information such
as timing behavior, measurement context or precision. As a remedy, this paper
introduces a way to integrate timing aspects into TDs.

1{
2 "@context": "https://www.w3.org /2019/ wot/td/v1",
3 "title": "Coffee -Machine",
4 "securityDefinitions": { "basic_sc": {"scheme": "basic", "in":"header"},
5 "security": ["basic_sc"],
6 "base": "coaps://coffee -machine.example.com:5683",
7 "properties": {
8 "status" : { "forms": [{"href": "properties/state"}]}
9 },

10 "actions": {
11 "brew" : {"forms": [{"href": "actions/brew"}]}
12 },
13 "events":{
14 "error": {
15 "data": {"type": "string"}, "forms": [{"href": "events/error"}]
16} } }
Listing 2.1. A Thing Description for a smart coffee machine that exposes the machine
status, a brewing action and an error event functionality, together with their URIs.

3 W-ADE: API Development Environment for WoT

To solely measure the time it takes to invoke an interaction, several operations
need to be performed. Depending on a Thing’s implementation and the choice of
protocol, a compatible service which can communicate via this protocol eventu-
ally needs to be started on the Consumer. Then, the desired endpoint has to be
extracted and a request to execute it has to be sent. Subsequently, the time until
the response is received has to be manually measured. To obtain representative
results, this process would have to be repeated numerous times. Depending on
the number of interactions, the level of their diversity and the quantity of ser-
vices that need to be utilized, this can become a time-consuming and error-prone
process. To minimize the susceptibility to errors and overall lighten this series of
actions, we developed W-ADE : Web of Things API Development Environment.
It simplifies the TD-based interoperation with devices, can be expanded with
required protocols and facilitates timing measurement of Thing executions.
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3.1 Application Features and Implementation

W-ADE possesses WoT specific functionalities, typical features needed for API
interaction, and the possibility to measure timing. Its core is based upon the
W3C Scripting API reference implementation5, making it compatible with WoT
paradigms. It is able to parse and interpret TDs, enables users to edit them
and execute chosen interactions in a specific order. W-ADE acts as Consumer
to communicate with virtual or physical entities over various protocols6. As
it supports diverse protocols existing in IoT ecosystems and web browsers are
usually restricted, it is realized as a standalone Electron7 application8.

Since a TD is the interface for interactions and accessing API endpoints is
a main use-case, functionalities, such as sending requests with optional input
values and displaying responses, are implemented. Another substantial feature
is entering, storing, and applying required security credentials. Beyond that, W-
ADE measures the overall time it takes to send a request, process it on the
target application, and finally receive a response. Utilizing the Node.js feature
process.hrtime(), high-resolution real time measurements in nanoseconds are
available. This and the size of the sent or received data, is then displayed. Fur-
ther, W-ADE’s architecture facilitates custom plugins, allowing it to be easily
extended by numerous already existing WoT implementations. An overview of
its system architecture is presented in Fig. 1.

Fig. 2. W-ADE’s GUI. Thing Descriptions can be uploaded and edited in the Editor
(A). Interactions are parsed and visualized in (B), where input values can be entered
and interactions can be selected. Results, including measured communication time and
payload size of input or output are displayed in (C).

5 Node-wot (https://github.com/eclipse/thingweb.node-wot) is based upon the
JavaScript runtime Node.js (www.nodejs.org/).

6 Embedded Binding Templates [8] enable the incorporation of further protocols in-
cluding custom ones and thus, facilitate interoperability for diverse vendors.

7 A JavaScript based framework, which allows to build cross platform applications.
8 W-ADE is available here: https://github.com/tum-esi/wade
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3.2 Workflow

To retrieve timing performance data of a Thing in W-ADE, first a TD has to be
inserted: it can be pasted, uploaded, or fetched via a URI. This TD is then parsed
and all available Properties, Actions, and Events with according input fields/
drop-downs are generated. Interactions can then be selected and invoked. If
applicable, security credentials, e.g. user-password combinations or broker data,
can be stored beforehand. Then, a request to the associated endpoint will be
sent. Simultaneously, the internal measurement is started and stopped as soon
as W-ADE receives the Thing’s response. The elapsed time in milliseconds and
if available, the size of the received data in bytes will be shown. The according
user interface is illustrated in Fig. 2.

W-ADE provides the framework for timing performance testing, eases the
work with TDs and due to its plugin architecture, is able to improve tooling
around the WoT ecosystem. Nonetheless, to give reliable and reusable assertions
on timing performance we introduce a more elaborate timing analysis technique
for timing performance benchmarking in Sec. 4.

4 Automated Timing Performance Benchmarking

W-ADE aims to facilitate the automated generation of timing performance
benchmarks of a Thing with merely its TD available; Premised that the specific
device is WoT-enabled and consumable. We define the scope of timing perfor-
mance in Sec. 4.1, elaborate our benchmarking technique in Sec. 4.2 and present
its implementation in Sec. 4.3.

4.1 Timing Performance Possibilities in W-ADE

The time it takes to communicate with a Thing is dependent on factors like con-
nection throughput, available bandwidth, network workload, loss rate, software
characteristics, hardware architecture, latency of outgoing packets, packet size
or used communication protocols [12, 13]. To measure timing performance, com-
mon approaches are measuring the latency of outgoing packets or the throughput
rate, while tweaking network conditions, manipulating bandwidth, or switching
protocols [3, 12, 14]. In test scenarios, it is feasible to vary system configurations
and retrieve data on the network environment or target devices. However, in
real-world scenarios, mashup designers do not necessarily have access to manip-
ulate devices or the opportunity to analyze internal application processes. Things
could be connected via gateways and data on network conditions might be miss-
ing. As our objective is the facilitation of automated timing performance bench-
marking on any capable machine, in any network environment, without knowl-
edge about the target application, and while using any IoT-protocol, network-,
protocol- and machine influences are not considered individually.

For this reason, W-ADE’s timing performance technique is based on mea-
surements of the overall round trip delay time (RTD), including the required
processing time of the Consumer. The RTD is the sum of latency in each di-
rection including the Thing’s processing time. Latency indicates the total delay
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between endpoints [13]. In our case this relates to the total time elapsed, from
the moment the data is sent until the response is received, expressed by Eq. 1.

T dynamic(x) = T consumer(x) + T transfer(x) + T process(x) (1)

– Tdynamic: Total dynamic time needed for transferring a message from the
Consumer to a Thing and receiving a response for an interaction x.

– Tconsumer: Consumer-side (in our case W-ADE’s) processing time.
– Ttransfer: Time needed for sending/ receiving messages over the network.
– Tprocess: Internal process time of a target Thing. It depends on the path of

the internal execution and the time spent in the instructions on this path on
this particular hardware [15]. Also covers physical interaction times.

Although the influences of Tconsumer and Ttransfer cannot be isolated reliably,
it is possible under certain conditions to extract the static timing performance
of an Action (a time-consuming physicial or virtual internal process). The IoT
device must offer a Property-read as well as an Action interaction; Interactions
must be implemented synchronously (not asynchronously or queued: responses
are only send after a physical or internal process is finished)9; The application
logic is comparable for all existing interactions; The time for reading a Property
value is negligible (e.g. due to retrieving from memory); Tdynamic of the Action
is bigger than Tdynamic of the Property-read. With these fullfilled prerequisities,
we make the following assumption:

T static(x) = T dynamic(x)− T dynamic(y) (2)

Tstatic(x) is the estimated static time of an Action x that does not change with
network or client alternations. Tdynamic(x) defines the dynamic time of the in-
voked Action x, Tdynamic(y) the same for a Property-read y.

4.2 Benchmarking Technique

To provide meaningful timing performance benchmarks, timing constraints on
measurements and reliable average timing values need to be determined. For this
purpose, bounds on execution times have to be identified. This can be achieved by
executing an interaction for several repetitions or a specific amount of time, while
simultaneously measuring the elapsed time. Results are combined to estimate
execution time bounds. These are specified by deriving the overall maximum and
minimum observed execution time. This is commonly called worst-case execution
time (WCET) and best-case execution time (BCET) [15]. Generally, the BCET
is overestimated and the WCET underestimated, as the actual values are almost
impossible to derive. Since we cannot guarantee that Things can be analyzed,
they are treated as black-box components and estimated WCETs are utilized.
Moreover, the average execution time (AET) for all measurements is computed.

9 It is assumed that interactions of a WoT-enabled Thing are mostly imple-
mented to be synchronous, as conveyed in the WoT TD implementation re-
port (https://w3c.github.io/wot-thing-description/testing/report.html). In future
versions of the TD, information on interaction-implementation will be included.
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Fig. 3. Basic concept of our timing benchmarking technique. The curve depicts sample
values of interaction timing performance. Its minimum indicates the estimated best-
case execution time, its maximum the estimated worst-case execution time. The middle
line represents the Average Execution Time, surrounded by its confidence interval.

In order to offer reliable benchmarks, we use confidence intervals (CI)10 to
propose a range of plausible values for the AET. The CI is calculated as seen in
Eq. 3, where x is the sample mean, σ the standard deviation, n the sample size
and z∗ represents the appropriate z∗-value from the standard normal distribution
of the chosen Confidence Level (CL). The CL indicates the probability that the
unknown parameter lies in the stated interval.

x± z∗ σ√
n

(3)

To compute static timing, measurements of both a Property and Action are
required. The static AET is computed from the difference of the dynamic AET
values of the included Action and Property measurements (see Eq. 2). Its CI is
calculated with Eq. 4: Elements have the same meaning as in Eq. 3, whereby
subscript a represents Action and subscript p Property values.

xa − xp ± z∗
√
σ2

a

na
+
σ2

p

np
(4)

Certain factors influence execution times and need to be considered when timing
performance is measured and interpreted. One factor is the context dependence
of execution times [15]. The execution time of individual instructions may vary
by several orders of magnitude depending on the state of the processor. Thus, an
execution time B can heavily depend on the state produced by execution A, e.g.
for initial connection establishment, regarding memory or caching [15]. A task
can also show variations depending on the payload or divergent environment
behavior. To minimize this impact, the option of using measurements after a
certain time has passed and an indefinite amount of interactions have been exe-
cuted, is available and measurements can be repeated multiple times to reduce
context errors. To remove the impact of initial connection establishment, the

10 A CI, in statistics, refers to the probability that an unknown value will fall between
a specific range of values, calculated from observed data [16].
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first measured values are removed. Further, timing anomalies, counter-intuitive
influences on the local execution time of one instruction on the global execution
time of the entire task [15], need to be considered and optionally be removed. We
use the common approach of detecting outliers with the help of the interquartile
range (IQR) that represents the width of the box in the box-and-whisker plot
[17] and indicates how spread out middle values are, shown in Eq. 5.

IQR = Q3 −Q1 (5)

min = Q1 − 1.5× IQR and max = Q3 + 1.5× IQR (6)

The IQR is the difference of the third (Q3) and the first quartile (Q1). A Quar-
tile divides the number of data points into four equal parts, or quarters. Q1

marks where 25%, Q3 where 75% of the data is below. Eq. 6 defines how the
minimum and maximum threshold can be computed to identify outliers. Outliers
are defined as values that are more than one and a half times the length of the
middle-value box, away. Identified outliers can then be removed.

4.3 Implementation

To put this technique into practice, a timing performance feature is implemented
in W-ADE. Users need to select interactions, enter required inputs, and choose
performance analysis settings, including the type of measurement - either It-
eration or Duration - with the desired amount. Iteration indicates that mea-
surements are executed a certain number of times, whereas Duration executes
them for the entered time-period. Then, a delay before the beginning of overall
measurements or before the beginning of each execution can be scheduled. To
finally start the execution and computation process, the desired CL to calculate
the AET’s CI has to be entered. Selectable options are 80%, 85%, 90%, 95%,
99%, 99.5% and 99.9%. To take into account potential environmental impacts,
results are subdivided into Possible and Realistic. They respectively contain com-
puted WCET, BCET, AET, CI limits for the AET, and the first measurement
value. Possible results are computed considering all measurements except the
first measured, whereas for Realistic results neither the first measured, nor de-
tected outliers are included. Additionally, settings, general information, and all
measured values in chronological order are displayed. To compute static timing,
one Property, one Action, and the option static timing must be selected. As
WCET and BCET are not applicable, they are not present in static results.

5 Timing Performance Annotation

To be able to apply timing performance benchmarks, results needs to be inte-
grated into the TD, in reference to the appropriate interaction. For this purpose,
we propose a vocabulary set, referred to as InteractionTiming, that describes
timing performance benchmarks. It is compatible with present TD vocabularies,
as it is based upon similar semantics and principles. Existing TD vocabularies
are independent and extensible. They each define a collection of terms that can
be interpreted as objects denoting Things and their Interaction Affordances [5].
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Fig. 4. Our proposed InteractionTiming vocabulary with term keys and values, in-
cluding child elements and their data types. It is intended for annotating a Thing
Description, in order to characterize timing performance of its associated Thing.

As not all collected performance data discussed in Sec. 4 is significant for
describing timing performance, only specific elements are included in our vo-
cabulary. Fig. 4 gives an overview of the main InteractionTiming vocabulary
terms. The proposed term names are only suggestions and can be easily ad-
justed if they conflict with other TD terms. staticTiming characterizes static
timing measurements and is added to the TD on the same level as forms. Other
measurements are respectively summarized in dynamicTiming and are added
to the particular forms element of the interaction. By default, both of them
include measurementContext information, confidence data, and results cate-
gorized in possible and realistic. As measurementContext implies only con-
textual data, it is linked to by a JSON Pointer [18] and can be stored in another
document. This default term set was elaborated with the aim of providing most
information without including the entire set of results. An example of an anno-
tated TD comprising dynamic and static performance data is depicted in List.
5.1. For the sake of readability, only Possible measurement data is added and
confidence information of the dynamic annotation is absent. We provide a com-
plete annotated TD11 externally12. As a TD can be presented as a JSON-LD file,
its specification [5] also provides a JSON Schema [19] to syntactically validate
TDs. To extend this Schema, we created an InteractionTiming JSON Schema,
including detailed descriptions13 and a TD JSON Schema extended with it14.
An annotated TD can be generated in W-ADE after results are computed. If
desired, annotations can be further revised in the TD editor, before saving. An

11 Available at www.ei.tum.de/fileadmin/tueifei/esi/WADE-files/td_annotated.json
12 The distribution of annotated TDs is not determined in this paper, since not even

the W3C WoT working group has fully explored TD distribution possibilities so far.
13

www.ei.tum.de/fileadmin/tueifei/esi/WADE-files/Interaction_Timing_schema.json
14

www.ei.tum.de/fileadmin/tueifei/esi/WADE-files/TD_Interaction_Timing_schema.json
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enhanced TD can be interpreted by a human and an automated system. It offers
detailed semantics for describing how a Thing behaves regarding timing.

1 "brew": {
2 "staticTiming": {
3 "possible": {
4 "AET": {
5 "AET": 40078.83,
6 "confIntervalMin": 40072.32, "confIntervalMax": 40085.35
7 } } },
8 "forms": [{
9 "href": "actions/brew",

10 "dynamicTiming": {
11 "measurementContext": "#/ measurementContext/

dynamicTimingContext_action/brew",
12 "possible": {
13 "firstMeasured": 40221.06,
14 "BCET": 40118.66, "WCET": 40962.02,
15 "AET": {
16 "AET": 40238.33,
17 "confIntervalMin": 40185.93, "confIntervalMax": 40290.74
18 } },
19 "confidence": {
20 "level": 99.9, "factor": 3.291, "numMeasurements": 100
21} } } ] }
Listing 5.1. A snippet of an annotated Thing Description, including dynamic and
static timing data for the Action brew. Dynamic annotations are added to the particular
form element, whereby static annotations are located on the same level as forms.

6 Evaluation

To prove the correctness and validate the quality of our technique, we conducted
three virtual experiments and one use-case scenario with a physical IoT device.

Experiment 1, Validity Test: To validate W-ADE’s timing performance func-
tionality and to show that processed results are consistent, a Property-read that
returns a 14 byte string of an externally hosted TD and its simulated Things15

was selected. Then, a HTTP-request was executed with a chosen CL of 99.9%
for 1000 iterations, 10 times. Different network conditions applied for the Con-
sumer and simulated Thing. We then examined how results differed, to what
percentage the CI fluctuates around the AET and verified whether AETs are
in the range of other CIs. Fig. 7 shows that computed AETs and their corre-
sponding CI limits are consistent for Possible, as well as Realistic results. Only
some negligible deviation, with a max. range of 10ms in Possible and 4ms in
Realistic average AET values, were observed. Moreover, CI limits always lied
within a range of +/−5% of AETs and AETs values lied in their associated CI,
including all other measured CIs.

Experiment 2, Sanity Check: To evaluate W-ADE’s credibility, we matched
our measurements with measurements of an ADE16 called Postman17. It acted

15 This TD is provided by the W3C WoT working group for testing purposes.
16 ADE stands for API Development Environment and describes software that focuses

on designing, building, and testing APIs.
17 Postman (www.getpostman.com/) version v7.16.1. was utilized.
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Fig. 5. W-ADE’s measured, rounded Realistic (blue) and Possible (orange) average
execution times (AET). Confidence intervals (CI) always lied within a 5% range (PI)
around the average values. AETs always lied in their own and all other CIs.

Fig. 6. Measured average execution times of W-ADE (blue) are compared to Postman’s
(yellow). Bars denote the average values for 1000 measurements each. Enclosing thinner
bars respectively indicate confidence interval limits. Both systems produced consistent
values, whereas W-ADE’s expected overhead to Postman was also consistent.

as a control entity. In comparison to W-ADE, Postman is not able to parse or
understand TDs. It can only communicate over HTTP and lacks functionalities
to interpret and produce timing performance benchmarks. Using the same test
Thing from Exp. 1, we executed an HTTP Property-write request with a 12
byte string-input, no output, and a CL of 99.9% for 1000 times, repeating it 10
times with W-ADE and Postman. To make result sets comparable, we applied
W-ADE’s technique onto Postman’s results to processed the WCET, BCET,
and AET with its CI. We used W-ADE’s Possible results, as outliers were not
removed from Postman, and rounded them to integers.

Results, presented in Fig. 6, show that Postman’s and W-ADE’s results are
proportional to each other and consistent within. WADE’s AET values showed
a max. deviation of 5, 98% (min. 221ms, max. 235ms). Postman’s values showed
a similar max. deviation of 6, 42% (min. 103ms, max. 109ms). W-ADE added
an average overhead (see Tclient(x) in Eq. 1) of about 121ms and 111, 01% in
comparison to Postman. This is expected, as Postman’s default behavior keeps
socket connections open18. W-ADE closes them after each request as keep-alive
connections are only usable for polling, which should rather be implemented as
event properties. This is the anticipated way of writing a Consumer application.

18 This behavior cannot be changed in the current version of Postman.
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Experiment 3, Static Timing: To confirm the validity of our static tim-
ing approach, introduced in Sec. 4.1, we created a script that simulates a Thing,
providing a Property-read that returns a 14 byte string and an Action, that
returns the same variable after a predetermined delay of 1000ms, simulating a
physical process of a device. It was then exposed on the same machine running
W-ADE, communicating over the same local network. 100 Action and Property
HTTP requests were sent to the before-mentioned interaction with a chosen CL
of 99, 9% and measured with W-ADE, 10 times each. Due to network anomalies
and other outliers adding a noticeable effect to timing, we used rounded Realistic
values for our evaluation. As shown in Fig. 7, the computed average static AET
of 999,30ms matched the artificial delay of 1000ms to 99, 93%, whereby Realistic
AET measurements resulted either 999ms or 1000ms. The min. lower limit of
the CI was 998ms and the max. 1001ms. Giving a −0, 2%/+0, 1% range around
the actual delay. This confirms that that computed results are able to anticipate
actual interaction timing performance.

Fig. 7. Computed static timing performance of an Action. The upper curve indicates
dynamic measurements (see Eq. 1) of Action a, the lower measurements of a Property
p. The middle line shows the static timing with its confidence interval. For the sake of
comprehension 990ms are subtracted from both Action values.

Use-Case with a Physical Device: To demonstrate the practicability of tim-
ing performance generation with a real Thing, we conducted static measure-
ments analog to Exp. 3. Included components were W-ADE as client and a
WoT-enabled19 Pan-Tilt HAT module20 (PTH) attached to a Raspberry Pi21

(RP), both connected to the same network. The evaluated Action scan moves the
robot arm from the outer-left to the outer-right position and the used Property
panPosition returns the position of the pan module. Both HTTP interactions
were executed 10 times with 1000 iterations each and a 99, 9% CL, before the
static timing of scan was calculated. Analog to Exp. 3, the evaluation was based
on Realistic results. An average static AET of 40055ms with a CI of 40053ms
- 40057ms was measured for scan. Whereby the average dynamic AET of all
measured Actions was 40063ms, with a CI of 40049ms - 40077ms. Property
measurements revealed an average AET of 8ms and CI limits of 7,6ms - 8,8ms.

19 A WoT-enabled Pan-Tilt HAT: www.wotify.org/library/Pan-Tilt\%20HAT/general.
20 A set of horizontal and vertical motion servos, that can be moved individually.
21 A small single-board computer, here a model 3B+ running Raspbian 2019-09-26.
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This proves that W-ADE enables the conduction of static timing performance
on an actual physical IoT device. To once again validate that the static AET
matches the actual time of a scan movement, manual, possibly error-sensitive
chronometer based measurements, would be necessary.

7 Related Work

Numerous approaches on how the Web of Things can look, have been introduced
to the world of IoT [20–22]. As the TD standard and associated WoT approaches
not only present a well conceived concept, but also actively offer solutions to
counteract the fragmentation of IoT, this work is based upon them. Many W3C
WoT tools and services have already been contributed, nevertheless, there is
little scientific work on them available. This might be due to the TD standard
being rather new and hardly distributed. Therefore, no service or approach to
enhance a TD with timing information has been released.

While performance evaluation in IoT is the topic of many studies, they of-
ten focus on comparison of diverse protocol performance under specific circum-
stances, whereby the experiment environment is mostly controlled [23, 14, 3].
Other studies target network-performance regarding an IoT device [22, 24], the
general performance spectrum, or stress testing of Things [12]. In general, stud-
ies in the field of IoT performance do not deal with dynamic or static timing
performance of Things and do not offer solutions on how to generate comparable
benchmarks for this purpose. Choosing the best fitting communication protocol
and determining network performance makes sense when setting up IoT plat-
forms, but not when third-party Things need to be integrated into mashups or
their general timing performance needs to be benchmarked. In contrary to ex-
isting studies, our proposed technique enables developers to actively use timing
performance data for the design of real-world IoT systems and use cases.

8 Conclusion

Motivated by the problem of missing opportunities to easily measure and com-
pare timing performance of IoT devices based on their TD, we introduced a
technique which facilitates timing performance benchmarking, while considering
environmental influences. Thereupon, we developed W-ADE, an API develop-
ment environment and platform for the WoT ecosystem that implements our
technique and additionally enables manual timing measurement of device in-
teractions. To validate and demonstrate the applicability in practice, we tested
our technique with a physical IoT device and conducted virtual simulations.
We proved that W-ADE reliably predicts static timing performance of interac-
tions and offers accurate timing performance benchmarks. Combined with our
proposed InteractionTiming vocabulary to annotate TDs, mashup designers are
now able to estimate and compare interaction timing performance; thus, opti-
mize system compositions during design time.
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