
WiP Abstract: Mobility-based Load Balancing for
IoT-enabled Devices in Smart Grids

Nitin Shivaraman†, Jakob Fittler‡, Saravanan Ramanathan†, Arvind Easwaran§, Sebastian Steinhorst‡
†TUMCREATE, §Nanyang Technological University, Singapore, ‡Technical University of Munich, Germany

{nitin.shivaraman, saravanan.ramanthan}@tum-create.edu.sg, arvinde@ntu.edu.sg,
{jakob.fittler,sebastian.steinhorst}@tum.de

Abstract—There is an unprecedented load variability in the
smart grids due to device (e.g. electric vehicles) mobility
across different grid-locations. As a consequence, utility service
providers have started exploring solutions such as dynamic
pricing mechanisms, grid extensions and redistribution across
micro-grids. However, most of these solutions do not exploit the
transient nature of mobile devices. In this work, we propose an
alternate mobility-based load balancing mechanism that exploits
device-level flexibility. With recent advancements in Internet of
Things (IoT) technology, we assume these devices to be equipped
with IoT capabilities. We present an abstract model to capture
the demand from these IoT-enabled devices in the form of a utility
function. Our objective is to cater to the demand by incentivising
device mobility without exceeding the peak load capacity across
all grid-locations such that the overall utility of the devices is
maximized.

Index Terms—Load Balancing, IoT, Smart Grids, Electric
Vehicles, Decentralized Optimization

I. INTRODUCTION

Load balancing has always been a major research area in
the smart grids domain. The issue is gaining further traction
due to the electrification of public transport, shift towards
electric vehicles and increased use of personal mobility de-
vices (PMD). The problem is inherently complex due to the
stochastic nature of the device (or vehicle) demand. Several
research studies have been carried out to tackle this dynamic
load balancing problem. Some of the existing techniques
introduce incentive schemes [1]–[3] to encourage load shifting
to non-peak times. Other methods incorporate mobile energy
sources [4] to augment the existing capacities of the grid, often
known as grid-extensions. Some studies [5] focus on energy
redistribution across different micro-grids. However, most of
these works handle the load variability only from the grid
perspective. The solutions that consider load-shifting due to
inherent device mobility are least explored.

In this work, we present a novel decentralized mobility-
based load balancing algorithm that maximizes the overall
utility of the devices across all grid-locations. We assume that
the devices are equipped with IoT capabilities which allow
them to be connected in a network and communicate with
other devices in the same network. The system architecture
and device interaction is shown in Figure 1.
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Fig. 1: The grid aggregator and the devices (including mobile
devices formed into clusters)

Without loss of generality, we assume the grid is subdivided
into multiple clusters (micro-grids), each having a peak load
capacity and managed by an aggregator unit. The aggregator
provides the grid status (e.g. load constraint, pricing, etc.) and
the electricity supply to the devices. Each cluster comprises
both stationary and mobile devices. Mobile devices have
a storage unit (battery) that enables them to move across
clusters. Mobile devices could either have a fixed route (e.g.
public transport) or a dynamic route (e.g. taxis) defined by
the devices. Thus, resulting in a fixed or a stochastic load.
We define a utility function for each device that abstracts the
energy demand of the device, utility losses due to deadline
misses and device mobility (information obtained from ag-
gregator). The algorithm aims at maximizing the cumulative
device utility while ensuring that the peak load capacity across
different clusters is not violated.

II. MOBILITY-BASED LOAD BALANCING

We consider a 2-tier hierarchical architecture as shown in
Figure 1. We assume a finite timeline T that is divided into
time slots of fixed duration T0.

A. System Model

Suppose the system comprises L clusters and K devices. We
denote the set of aggregators and set of devices as A = {al}
and D = {dk}, respectively. At any point in time, each device
dk is connected to at most one aggregator al for power and
communication. Let dlk denote the set of devices connected to



aggregator al. Each aggregator has a limited power capacity
denoted as α̂l.

Each device requests for an energy demand of Ek within its
deadline T d

k and has a set of power modes αk = {α0
k, α

1
k, . . . ,

αmax
k } associated with it. Each such request is denoted by,

θk =
(
T d
k , b

m
k , Ek, αk

)
(1)

where bmk is a binary variable that denotes whether the device
is stationary (bmk = 0) or mobile (bmk = 1).

We define a mobility cost vector Cm
k (i, j) for each device

that moves between cluster i and cluster j as < tmh,i,j , c
m
h,i,j >,

where tmh,i,j denotes the movement duration and cmh,i,j denotes
the utility loss per time slot. We use the notation h to denote
different transition options (i.e. cost vs. duration trade-off).

B. Utility Function

The utility function of a device is defined per time slot. For
time slot t ∈ T , it is given as:

uk(t) = ψk(t)γk + βk(t) + (1− bmk )(1− δi,j(t))βmax (2)

1) Positive Utility: It consists of a progress function ψk(t)
and a priority function γk. The progress ψk(t) is given by

ψk(t) =
αk(t)T0
Ek

+
βm
k T0c

m
h,i,j(t)

Ek
bmk

where βm
k is a negative constant used to capture utility loss

due to mobility. The accumulated progress (utility gain) Ψk

up to the time slot tc is given as Ψk(t) =
∑tc

t=0 ψk(t). The
priority function γk assigns different utility value to devices
based on its requested energy Ek and is used to differentiate
devices with same/different energy requirement.

2) Negative utility: The βk(t) incorporates the penalty for
missing the deadline. We assume the utility of the device
becomes negative if it cannot be served within its deadline.

βk(t) =

{
F(t), (t > T d

k ) ∧ (Ψk(t) < 1)

0 otherwise

where F(t) = β[exp(κ(t − T d
k )) − exp(κ((t − 1) − T d

k ))] is
penalty per time slot and β is a negative constant. The κ is
used to differentiate devices with the same deadline. Higher
κ leads to a higher penalty denoting higher priority.

The third term in Eq. (2) is to ensure the stationary device
does not move from its cluster. They are penalized if they
move, say from i→ j. Thus, δi,j is 1 if i = j and 0 otherwise.
We define βmax as a very large negative number.

C. Problem Formulation

Our objective is to maximize the cumulative device utility
across all clusters over all time slots:

max
∑
t∈T

∑
dk∈D

uk(t) (3)

s.t.
∑

dk∈dl
k

αk(t) ≤ α̂l, ∀t, ∀al (i)

0 ≤ Ψk(t) ≤ 1, ∀t,∀dk ∈ D (ii)
((ak(t) 6= 0) ∧ (cmh,i,j(t) 6= 0) = 0), ∀t,∀dk ∈ D

(iii)

dik ∩ d
j
k = ∅, ∀{ai, aj} ∈ A,∀t (iv)

αk(t) ∈ αk, ∀t,∀dk ∈ D (v)
(tmh,i,j , c

m
h,i,j) ∈ Cm

k (i, j), ∀t,∀dk ∈ D (vi)

Eq. (i) constrains the total power consumption of all devices
in l to the maximum aggregator power capacity α̂l at all time
slots. The accumulated progress is limited between 0−100% in
Eq. (ii). This also ensures the mobile device cannot move until
it has accumulated at least the mobility cost as utility. Eq. (iii)
captures that a device must never move and consume power at
the same time. Eq. (iv) captures that each device is associated
to at most one aggregator at any time. Eq. (v) restricts the
power consumption to be among the different modes defined
in αk. Eq. (vi) restricts the choices of transition from cluster
i to other cluster j to be among the mobility cost vector.

III. SUMMARY AND FUTURE WORK

Constant upgrades to the grid are expensive and not a
feasible load balancing solution as the number of mobile
devices increases. To overcome this limitation, we propose
a mobility-based load balancing scheme. As a part of our
research, we plan to develop a decentralized solution to the
presented optimization problem where devices communicate
among each other to make decisions at every time slot. We
also plan to incorporate incentive schemes for mobility and
take into account the pre-defined routes (relaxes stochastic
requirement) for mobile devices.

In the poster, we plan to show the detailed model of
the mobility-based load balancing along with a solution.
The results from the optimization will also be included to
demonstrate the performance of the formulation.
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