
Energy-Optimized Elastic Application Distribution
for Automotive Systems in Hybrid Cloud

Architectures
Philipp Weber

Technical University of Munich
Munich, Germany

philipp.weber@tum.de

Philipp Weiss
Technical University of Munich

Munich, Germany
philipp.weiss@tum.de

Dominik Reinhardt
Corporate Research

BMW Group
Munich, Germany

dominik.reinhardt@bmw.de

Sebastian Steinhorst
Technical University of Munich

Munich, Germany
sebastian.steinhorst@tum.de

Abstract—The increase of resource-intensive applications in
modern vehicles used for streaming, gaming or autonomous
driving results in rising energy-consumption of its advanced
computing and connectivity hardware. Especially in electric
vehicles, this leads to much higher hardware costs and a
decreased vehicle range. Modern premium cars use distributed
heterogeneous hardware and mostly communicate via APIs to
large cloud backends. Current approaches to reduce on-board
energy consumption offload applications partly and make use of
limited network connectivity assumptions to their backends. In
this paper, we propose a hybrid electric and electronic architec-
ture that manages vehicle hardware by using cloud computing
frameworks. Our hybrid cloud architecture is a connection of the
local vehicle cloud and a large data centre community cloud. We
propose an online optimization algorithm that shifts applications
from on-board ECUs to data centre servers and vice-versa. The
optimization algorithm minimizes the local energy-consumption
while satisfying predicatively dynamic constraints like data rate
limitations, application policies and resource limitations. Our
approach outperforms the non-predictive approach in average
by 16%, in the best case by 21% and in the worst case both
behave equally well.

Index Terms—Hybrid Cloud Computing, Elastic Application
Reallocation, Energy Optimization

I. INTRODUCTION

The automotive industry is confronted with new challenges
to fulfil future customer expectations within the upcoming
decade. Autonomous driving, highly interconnected cars with
different ecosystem (IoT) and always changing requirements
for infotainment systems are only a subset of already known
topics. In parallel, political and environmental restrictions
impede future innovations for cars [4]. Therefore, the need
for computation power is significantly increasing by the rising
amount of software within future cars.

Thus, the amount of electronic control units (ECUs) is
increased by every vehicle generation and E/E (electric and
electronic) architectures are getting bigger and more complex

With the support of the Technische Universität München – Institute
for Advanced Study, funded by the German Excellence Initiative and the
European Union Seventh Framework Programme under grant agreement n◦
291763.

Figure 1: Our idea shows a hybrid cloud architecture as Car-as-
a-Cloud. By connecting vehicle and data centre Infrastructure-
as-a-Service approaches, we can provide elastic applications
using location independent resources.

[4, 18]. To tackle that trend, Original Equipment Manufac-
turers try to centralize software (see Figure 1, Computing
Platform) on capable computing platforms or vehicle servers
[3, 17]. These servers are built up monolithically and typi-
cally integrate strong CPUs and adequate memory, similar to
consumer electronic devices.

The rising energy consumption of on-board ECUs will have
a significant influence on the maximum possible driving range
of electric cars. For future E/E architectures an additional
power consumption of up to 4 kW is assumed [9]. With
a battery capacity of 42.2 kWh for the BMW i3, on-board
high performance computing and electrical vehicles are not
practical. A 1 kW Powernet-Load increases CO2-Emission
by more than 30 g/km. Therefore, efficient use of on-board
resources is essential for future automotive systems and will
be discussed in this paper.

Due to safety and security concerns, up to now some
software parts must be partitioned on problem specific micro-
controllers to fulfil Automotive Safety Integrity Level (ASIL)
requirements up to ASIL-D. It is common practice to integrate
all remaining software parts on a general-purpose CPU within
each single computing platform [5, 16]. Vehicle software
with stricter real-time requirements remains on appropriate



microcontrollers. It is tried to gradually shift even that software
with minor changes to performance units.

However, this approach is restricted to available qualified
automotive semiconductors and their current maximum per-
formance capabilities on the market. The already mentioned
requirements for power consumption and required computation
power are hard to achieve locally within a single ECU and over
a lifetime of 25 years [2]. Therefore, another strategy to offload
computation power into data centres is necessary. Software
companies which are working on mobile devices (e.g. Google,
Microsoft) are using more and more computation power of
their data centres inside these devices [7]. Compared to a car,
several ECUs are already interconnected to each other and
software relocation between ECUs that serve on-demand com-
putation requirements are needed (‘Car-as-a-Cloud’ - CaaC).
Current solutions split up applications into modules, in order
to reduce the data size which must be transferred during that
process. This leads to the need of redesigning all applications
and to a communication overhead between their offloaded and
on-board modules.

To cope with the rising number of complex ECUs inside
vehicles and a more and more challenging expectant attitude
towards in-vehicle applications, we need to rethink their
computing, network and storage resource management. When
offloading applications, the most efficient computing resource
in terms of energy consumption must be determined. Due to
unstable network connections to the offloading destinations,
we need to consider dynamic conditions, under which the
optimum location for each application is constantly changing.

By proposing and building a hybrid cloud architecture as
Car-as-a-Cloud which connects multiple vehicle ECUs with
multiple data centre servers, we make the following distribu-
tions:
• We firstly categorize and give insights into current cloud-

based vehicle functions in Section II. We analyse current
offloading algorithms and energy-consumption saving as-
pects.

• Based on our System Model in Section III, we use
Infrastructure-as-a-Service approaches which allow appli-
cations to run on on-board ECUs or data centre servers.
Our presented system architecture manages these on-
board ECUs like regular cloud resources.

• A predictive broadband channel algorithm, which is able
to predict the network quality for a time and location,
is used in Section IV for our predictive distribution
algorithm. Instead of using look-up tables, we use an
optimization algorithm to dynamically shift applications
under changing broadband channel prediction.

• We provide a case study in Section V to explain aspects
of our predictive application offloading algorithm.

• We present our test bench set-up and evaluate our ap-
proach in Section VI. With our scalability analysis we
analyse multiple test application scenarios. Our approach
outperforms the non-predictive approach in the best case
by 21%, on average by 16% and in the worst case both
algorithms have equal energy consumptions.

II. RELATED WORK

In this section, we classify our architecture in the context
of cloud computing and definitions for cloud-based vehicle
functions. Furthermore, we analyse current dynamic cloud
offloading approaches, features and leading concepts. Last, we
discuss approaches to minimize on-board energy consumption.

A. Classification of cloud-based vehicle functions

Modern vehicle application architectures are not restricted
to on-board hardware anymore. The authors of [6] define
applications which run instead of on-board ECUs at least
partly in a cloud as “Cloud-based Vehicle Functions”. When
these applications aren’t restricted to on-board resources, then
they can provide new features that were unfeasible before [6].
Real-time and safety-critical functions still have to remain on-
board and have to be treated separately.

The authors of [6] are defining four categories of Mobile
Cloud Computing (MCC) application areas. These four cate-
gories are extended and adapted to the vehicular environment
by [11]. The classified domains are:

A Cloud Only: Applications run only in a data centre
B Fall-Back Method: Applications run as backup in a data

centre
C Duplicate Function: Applications could run in lock-step

or as double-check in a data centre
D Elastic Application: Applications can run on-board or in

a data centre

According to the classification system of [11], we use the
domain of Elastic Applications, which is the most flexible and
sophisticated approach, to describe the architecture presented
in this paper. In this category, applications can run seamlessly
either in data centres or on-board ECUs.

B. Dynamic cloud offloading approaches

In the domain of dynamic cloud offloading, we analyse
and explain state-of-the-art algorithms and system models for
shifting applications, modules or code between cloud and
mobile device.

[22] is describing a context sensitive offloading scheme
for general mobile devices. Based on falling distinctive, the
context-awareness switches between different wireless connec-
tions like Wi-Fi or 5G and between best cloud resource to use.
These resources can be mobile ad-hoc networks, cloudlets or
public clouds. In contrast to our client-server communication
model, [22] only allows the mobile device to be client and the
cloud resource to be server.

[1, 2] and [20] split up applications in smaller modules,
tasks or code. On one hand this allows specific resource-
intensive functions to be off-loaded. On the other hand,
the application design must be modified and modular, while
creating more interfaces and a communication overhead. Both,
[2] and [22] use application and network profiler in order
to classify application characteristics and track the current
network connectivity state in their system design.



Furthermore, [2] presents a heuristic mechanism for
scheduling and placing modules on a cloud server or an on-
board unit. The mechanism is set up of three stages. The first
stage does proactive placement to meet current network data
rate limitations and deadlines. In the next step, the placement
is refined to fulfil a set of predefined policies. During the last
step, the schedule for the application placement is executed.

To the best of our knowledge there is no contribution
to predictive cloud offloading, where predictive connectivity
estimations are influencing online distribution decisions.

C. Energy consumption of vehicle functions

In the following, we analyse different approaches to quan-
tify the energy calculations for cloud offloading. [12] and [20]
present a mathematical model for energy consumption which
describes functions running on on-board vs cloud-based. When
running cloud-based, an additional communication overhead is
generated which leads to higher energy consumption that has
to be considered in energy analysis according to [20].

A decision manager is presented in [8] and [12]. The latter
one can be used in a predictive manner in context of a car ride
or online during this ride. This approach calculates the location
of functions (on-board or data centre) upfront, depending on
the vehicle position. Therefor the data-rate along the route is
needed, but there is no information about the time-variation
of the data-rate. [15, 19] proves that all wireless broadband
channels are time-variant and are subject to many factors like
number of clients or weather conditions.

The authors of [20] prioritize economic factors (costs and
energy savings) over possible time savings by on-demand
cloud resources. The time savings can be achieved by faster
computation on specialized hardware.

III. SYSTEM ARCHITECTURE

We model our system as a hybrid cloud architecture with
a wireless network connection between the local cloud (on-
board ECU managed as a cluster) and the global cloud (mul-
tiple data centres), which will be presented in the following.

The hybrid cloud is a connection between a private cloud
and a community cloud. Both clouds are connected over a
wireless broadband peer-to-peer connection. The private cloud
is a local distributed cloud running on different embedded
systems. It is based on heterogeneous low-power platforms,
with limited computing power, storage and networking capa-
bilities. The name local cloud describes its operating location
inside a vehicle. The community cloud is a global centralized
server system running in data centres. Due to its location in
data centres, we define the community cloud as the global
cloud. In our test bench implementation in Section VI, we use
Openstack and its features as our cloud management system.

A. Local Cloud

The local cloud is a cluster of embedded systems. It is
organized like data centre servers to provide the same charac-
teristics like flexibility, upgradeability, hardware independence

etc. Each node of the local cloud is connected to a high-
throughput network, which in turn is connected via a mobile
radio network to a data centre. The different computing nodes
are heterogeneous and have special features e.g. real-time
capabilities, dedicated GPU hardware, high-capacity storage
or different hardware virtualization drivers. Our predictive
distribution algorithm from Section IV is running on the local
cloud.

B. Global Cloud

The global cloud is a cluster of high-performance data
centre servers. It differs from the local cloud in multiple
factors:
• It has highly specialized hardware like high-performance

GPUs, Tensor Processing Units (TPU) or high-speed and
high-bandwidth storage, which allows faster execution or
running resource-intensive applications.

• It provides a low latency and high data rate connection to
the Internet and IoT systems, when running inside data
centres [6].

• If other OEM applications and databases are running in
the same or nearby data centre, then low latency, high
data rate and unrestricted connection to protected fleet
data can be provided. An example is traffic jam or road
surface quality data, which is tracked by fleet vehicles
and sent to the OEM application backend.

• The limiting factor is the restricted connection and access
to sensors and actuators inside the vehicle. The data has
to be transmitted over a wireless and non-deterministic
connection from the vehicle to the data centre and vice-
versa.

C. Applications

Our system consists of multiple modules (Connectivity
Monitor, Application Manager, Optimization Algorithm, Con-
trol, Database and User Input) to monitor and distribute
applications between the global and local cloud. All appli-
cations are distributed dynamically on different computing
nodes. These computing nodes have different characteristics
as the hardware varies between the local and global cloud.
The applications can be real-time tasks, vehicle functions or
multimedia entertainment programs.

IV. PREDICTIVE DISTRIBUTION ALGORITHM

We present a block diagram of our predictive distribution
algorithm in Figure 2, which is running on the local cloud.
The Connectivity Monitor consists of current network sensing
and network channel forecast. It gathers current and future
connectivity parameters as input for the Optimization Algo-
rithm. The current parameter values are measured actively. For
our approach, the connectivity parameters are limited to data
rate and latency. The Optimization Algorithm optimizes the
placement of the applications on different compute nodes, us-
ing the predictive broadband channel parameters. The network
channel prediction is explained in detail in Section IV-A.



Figure 2: The block diagram from the presented software ar-
chitecture of our predictive distribution algorithm is separated
into different modules.

Characteristics and profiles of all compute nodes and ap-
plications are saved in the Database. This data is accessed
by the optimization algorithm during its execution. When the
optimization algorithm calculates a new optimum distribution,
which differs from the previous optimum distribution, appli-
cations have to be shifted.

All operative tasks that are needed for this shifting like
starting, stopping or migrating applications, are realized in
the Application Manager. The module is sensing current
application profiles such as CPU usage, RAM and data rate
consumption. The responsibility of the Control module is
to guarantee operations of the most important functions and
override commands from the Optimization Algorithm to the
Application Manager, if necessary. It also uses current net-
work channel parameters from the Connectivity Monitor. The
importance of each application is saved inside its profile in
the Database.

The User Input Testframe has two major tasks. Firstly, it is
used to add applications to the system or to remove them if
they are not required anymore. Secondly, it operates as a test
framework to run simulation inputs for the system model.

A. Network Channel Prediction

A moving vehicle succumbs changing wireless network
conditions. These conditions are not only time- and location
dependent, but also rely on other clients in the same network
cell, on the geometry of the surrounding and climate con-
ditions. A constant network quality is not realistic [15, 19].
To tackle this problem, telecommunication companies try to
predict short-term future channel parameters.

For our approach, we consider data rate and latency data be-
cause these values majorly influence migration time, offloading
capability and capacity. If an application is running inside the

Figure 3: The network data rate and ping are plotted over GPS
positions. We normalized the GPS positions as the distance
from the starting position. The prediction is from November
19th 2019 and the route is in the area of Munich. The shown
values are a randomized copy of the original data with same
dynamic and absolute properties.

global cloud, the request and the calculated response have to
be sent via the wireless network channel. The round-trip time
(RTT or ping) is crucial for time sensitive applications. In the
scope of this work, we use predictive Quality-of-Service (QoS)
information for our Connectivity Monitor. Predictive QoS is
a mechanism that enables the mobile network to provide
notifications about future QoS changes to consumers [10]. An
exemplary throughput and ping prediction is shown in Figure
3. We receive this data from a mobile network operator. The
diagram shows the predicted data rate over a travelled distance.
There can be high dynamic changes in short distances, but
also sequences with stable values. Concerning the ping, there
is smaller change in the absolute value, but the changes are
more frequent.

The prediction in low speed use cases (stationary or slow
driving) is more accurate than the prediction in high mobility
scenarios [21]. We expect that near future prediction models
will have > 95% accuracy [13].

The prediction data is used as one of our parameters for
our optimization algorithm to relocate applications before the
network data rate or latency parameter values do not allow a
seamless shifting anymore. Especially the on-loading process
of an application from the global cloud to the local cloud must
be completed before a data rate decrease.

B. Framework and Strategies

Our distribution algorithm is executed with a constant period
Θ. Depending on the current and predicted network values and



the active set of applications, a new optimum distribution is
calculated. The algorithm considers the future time span τ , in
which it optimizes the best possible distribution for each point
in time. Thus, after the period Θ a new τ is calculated. For the
future time interval τ the migration times for all applications
are calculated with the predicted network profile.

We reserve a data rate buffer that is not used by application
traffic, to guarantee migration times. This reserve is designed
to ensure that enough time is available to offload the applica-
tion with the longest migration time within τ .

To reduce the number of shifting attempts, we filter positive
peak data-rates within the time interval τ . Before negative
peaks occur, the data rate usage has to be reduced by on-
loading applications or by accepting the outage of functions.
Outage acceptance for every application is stored in the
database. We defined a strategy for special cases such as a
sudden connection loss where no time is available to on-
load applications. In this case, we skip optimization and run
applications with the highest priority, which are determined
by the applications parameters.

The system is able to save more energy compared to a
non-predictive approach by shifting applications sooner using
the predicted data rates. The sooner an application can be
offloaded, the less energy it consumes on local hardware. On
the other hand, if a future decrease of the data rate is known,
then the on-loading of an application can be timed exactly.
Thereby, application downtimes can be planned or avoided.

C. Optimization Algorithm

For every application a ∈ A we define application profile
parameters, such as total data size, average RAM consumption,
average CPU usage, start-up time, resume time and stop time,
which are stored in the database. Correspondingly, we define
profile parameters for available resources on compute nodes
(CN) c ∈ C of the hybrid cloud. These parameters are updated
continuously by the algorithm and saved in the database.

Using all the parameters from C and A, we define a resource
allocation problem. The goal of our optimization algorithm is
to calculate the best distribution for all applications on the
compute nodes, in order to minimize the energy consumption
of all local CNs. Therefore, the total energy consumption
on the local CN must be minimized, while meeting multiple
constraints. We formulate our minimization objective Ωlc for
all applications on local compute nodes as follows:

OP : min
∀(c∈C,a∈A

Ωlc =

∑
c∈Ci

∑
a∈Aj

Edyn(c,a) +
∑
c∈Ak

E0(c), (1)

where a, c ∈ Z.

The sum of all energy consumptions Edyn(c, a) is built
by the iteration over all applications a running on all local
compute nodes c. A compute node can be shut down com-
pletely, if there is no application running on it. The sum over

E0(a) expresses the basic operating energy consumption of a
compute node.

The constraints of our optimization algorithm describe the
resource limits of our local hardware and the predicted data
rate for each point in time. The total CPU capacity of all
local resources must not be exceeded by allocating too many
applications on the local compute nodes, which is expressed
by the following:

∀ c ∈ C, a ∈ A :∑
c∈C

∑
a∈A

rcons(a) < rp(c) (2)

where a consumed resource rcons(a) over all applications
a must be smaller than the provided resources rp(c) on the
corresponding compute c, that they are running on. Another
constraint is that the number of applications running in the
global cloud is limited by the predicted data rate. We sum up
the occupied data rate of every application not running inside
the local cloud and compare it with the predicted data rate:

∀ c ∈ C, a ∈ A :∑
c∈C

∑
a∈A

Bcons(a, c) ≤ Bp(t) (3)

where the sum of the consumed data rate Bcons(a, c) over
a applications A running globally, must be smaller than the
predicted data rate Bp(l, t).

V. CASE STUDY: PRE-EMPTIVE APPLICATION
OFFLOADING

We use a case study with six applications distributed over
three compute nodes on the local and the global cloud as
shown in Figure 4. Through the different steps A to C,
network conditions are changing, which simulates a vehicle
that succumbs changing network conditions. We show how
the optimization algorithm is changing the optimum solution
(distribution of applications) pre-emptively and shifting one
application in advance, before the data rate reserve is not
sufficient anymore.

The current data rate is presented on the left side of Figure
4. The on-board compute nodes (CN1, CN2) as local cloud
are marked yellow and the green sections show compute
node (CN3) as global cloud. Before step A, the optimization
algorithm is fed with current and future connectivity data. The
different algorithms that we explained in previous sections
calculate in Step C that the data-rate is not sufficient anymore
for APP4, APP5 and APP6 to run simultaneously in the global
cloud. Therefore, it determines when to start the on-loading
procedure to shift the best fitting application to on-board
hardware under the current conditions. With the predicted
data rate and the application size from the database of 12
MB for APP6, 18 MB for APP4 and 9 MB for APP5, the
resulting on-loading time is calculated. In this case, the best
fitting application is APP5 because it has the lowest energy



Figure 4: Predictive distribution algorithm scheme: The green
part shows all applications running in the global cloud (data
centres) and the yellow section shows its counterpart inside
a vehicle. Through different data-rates the shifting algorithm
starts soon enough to avoid failure through data rate limita-
tions.

consumption (retrieved from the database) and the smallest
size.

In step A, the application shift of APP5 starts with a data
rate buffer of 5 Mbit/s. In the next iteration B, the data-rate
sinks and the remaining shifting data rate is 2 Mbit/s. Until
step C, APP5 is completely migrated to local resources. If
APP5 would not be on-loaded completely until C, then the
service would be unreachable for a moment for local resources.
A security data rate buffer is added, to avoid these downtimes.

VI. PERFORMANCE EVALUATION

We have implemented the system architecture that we
introduced in Section III in our development and simulation
cluster. For the local cloud we used Single Board Computers
(SBC) as embedded hardware and an Amazon Web Services
(AWS) Elastic Compute Cloud (EC2) from the BMW research
and development data centre as global cloud. Furthermore,
we built a test framework to run the hardware in a driving
simulation and provide input stimuli as predictive connectivity
data.

A. Experiments Setup

Our on-board hardware resources in Figure 5 are simulating
embedded hardware clusters in future vehicles. They are built
up from Raspberry Pi 3B, Raspberry Pi 4, Rock Pi and Intel
Minnow Board together as one local cluster. As connection
between the nodes we use a standard network switch from
Netgear with ethernet CAT 6 cables. Connected to the network

Figure 5: Our test bench with heterogeneous embedded hard-
ware is connected via a switch over a wireless broadband
connection to the global cloud. Our set-up simulates a modern
vehicle architecture.

switch is a Fritzbox 7590 with an LTE SIM card to provide
connection to the Internet.

The global cloud is set up of three AWS EC2 instances
with each 16 GB RAM, six virtual CPUs (VCPUs) and 100
GB of storage. The instances are located in a data centre in
Frankfurt with 10 Gbit/s Internet connection data rate and an
average ping of 20 ms. We use standard Ubuntu 18.10 as the
OS on top of the data centre virtualization and configured each
instance to run as a computing node. Over an extra instance,
the local cloud is connected via a VPN to the global cloud, so
that we can use small LAN Classless Inter-Domain Routing
(CIDR) segments to address the nodes.

As a cloud framework we use Openstack [14]. Openstack
is a decentralized cloud computing framework which provides
different software packages for different hardware resources to
run as one cluster. The controller node is the main node in the
Openstack framework, where the main functions like identity
service, message queue or computing manager are located. It
is running in the local cloud. The remaining hardware nodes
are compute and storage nodes which provide their hardware
resources to the cloud. Openstack uses the IP protocol to
communicate to the different nodes in local and global cloud.

To solve our optimization problem of minimizing the energy
consumption on the local cloud, we use the Gurobi solver in
linear programming mode. After we defined the objective and
all constraints which we presented in Section III, we set up
the solution space as binary. The User Input Testframe module
feeds the optimization algorithm with predictive network chan-
nel parameters. The Gurobi solver calculates a matrix which
provides the optimum placement of the applications on the
compute nodes. The solution matrix is passed to the controller
node, which is shifting the applications on the compute nodes
accordingly.

For our test bench we define a set of test applications. The
constant period Θ is set to 1 s and τ is calculated dynamically.
We measured the energy consumption for all applications
running on the different compute nodes.



Figure 6: The green line shows the data rate over a driving
distance of 14 kilometres. If the data rate is high, then
many applications can be offloaded. The red area shows the
energy consumption (EC) of the local cloud, when using
our predictive offloading algorithm. In comparison, the non-
predictive Algorithm is represented by the blue area.

B. System Evaluation Analysis and Results

In order to efficiently test as many scenarios as possible,
we obtain the energy data measurements in our simulation
framework. The blueprint for all application profiles are based
on real vehicle body and entertainment functions. Thus, we
provide a mix of smaller and heavier (resource-intensive)
application profiles. To obtain the same starting condition for
our tests, the initial application distribution is fixed.

We compared our predictive offloading algorithm in the
simulation on the test bench with a non-predictive shifting
algorithm that has no information about future channel param-
eters, as presented in Figure 6. In contrast to our algorithm,
the non-predictive algorithm shifts applications as a reaction
on the changing network parameters.

Figure 6 presents the changing local energy consumption
and predicted data rate over a driven distance. We can see
in the energy consumption change in comparison with the
data rate that the predictive algorithm is reacting faster to the
changes in the data rate, while being able to offload more
applications. Between the distance of 6 and 8 kilometres, the
algorithm can offload all applications to the global cloud and
reduce the local energy consumption to a minimum.

In comparison to the non-predictive algorithm, our predic-
tive approach shows a more constant energy consumption.
This indicates that the applications are shifted less frequently.
Due to the data rate peak filtering, the location change of

Figure 7: Our predictive approach is plotted over the x-axis,
the non-predictive algorithm over the y-axis. The values on
both axes is the normalized energy consumption. Every orange
dot represents the relation of the energy consumption for both
algorithms over a predefined distance. The blue line shows the
first angle Bisector.

applications is less dynamic. Before the data rate is rising, the
predictive algorithm starts offloading applications. This can be
observed in a small displacement between the green and red
area. When forming an integral over both areas, our algorithm
outperforms the non-predictive approach by 19% less energy
consumption over a distance of 14 kilometres.

C. Scalability Analysis

As extension to the analysis based on Figure 6, we present
a scalability analysis, in which we sweep application profile
parameters. The result of the simulation is shown in Figure
7. Every orange dot represents one simulation result. It com-
presses all information from the integral over the red and blue
area graphs from Figure 6. This aggregated information of the
relation between both algorithm’s energy efficiency is plotted
over the standard driving distance profile. The area above the
blue bisector shows an improved energy efficiency for our
predictive distribution algorithm.

Our algorithms performs especially better with medium-
sized applications, leading to medium-sized relative energy
consumption. This can be seen by the accumulation of sim-
ulation results at location (0,55-0,75/0,6-0,8). The closer an
orange dot is to the spot (0,1), the more energy efficient it has
performed in the simulation compared to the non-predictive
approach. For a lower energy consumption, the application
sizes are too small, which leads to fast migration times. If the
energy consumption is higher, then the application sizes are



too large, which leads to long migration times. In both cases,
our algorithm is still better than the non-predictive approach.

On average over more than 200 simulations, our algorithm
is 16% more energy efficient than the non-predictive approach.
In the best case it is 21% better and in the worst case both
algorithms show equal results.

An additional parameter sweep of the compute node profiles
is not necessary, because the compute node parameter design
depends on application parameters. For the case that there is
a sudden connection loss (CL), our algorithm cannot perform
well as shown in green crosses in Figure 7. In this case the
advantage of predictive data rate information is less effective.

VII. CONCLUSION

In this paper, we have presented a local energy efficient
hybrid cloud architecture for distributed embedded systems.
By connecting embedded hardware with data centre high
performance servers on an IaaS layer, we made shifting
applications between the two domains possible. Our system
uses predictive network channel information in combination
with a live optimization algorithm to find the best distribution
for applications on compute nodes. The best solution is a
distribution with the least energy consumption on the local
embedded hardware.

In an experimental setup and evaluation, we have shown
that the algorithm leads to an average of 16% lower energy
consumption with prior knowledge of predictive network chan-
nel information than without. In the best case our approach
is up to 21% more efficient and in the worst case the
results are equal. Our presented architecture and algorithm
are a first approach to highly connected future automotive
E/E architectures that make high-performance computing with
minimum local energy consumption possible.

REFERENCES

[1] Arun Adiththan, S. Ramesh, and Soheil Samii. “Cloud-
assisted control of ground vehicles using adaptive com-
putation offloading techniques”. In: 2018 Design, Au-
tomation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2018, pp. 589–592.

[2] Ashwin Ashok, Peter Steenkiste, and Fan Bai. “Adap-
tive cloud offloading for vehicular applications”. In:
2016 IEEE Vehicular Networking Conference (VNC).
IEEE, 8.12.2016 - 10.12.2016, pp. 1–8.

[3] BMW AG, ed. Environment Model for Autonomous
Driving – The upcoming Challenges. 2017.

[4] Manfred Broy. “Challenges in automotive software en-
gineering”. In:

[5] Mario Kovač et al. “European Processor Initiative
(EPI)—An Approach for a Future Automotive eHPC
Semiconductor Platform”. In: Cham: Springer Interna-
tional Publishing, 2019.

[6] Dejan Kovachev, Yiwei Cao, and Ralf Klamma. Mobile
Cloud Computing: A Comparison of Application Mod-
els. URL: http://arxiv.org/pdf/1107.4940v1.

[7] Dejan Kovachev, Tian Yu, and Ralf Klamma. “Adaptive
Computation Offloading from Mobile Devices into the
Cloud”. In: IEEE.

[8] Ying-Dar Lin et al. “Time-and-Energy-Aware Compu-
tation Offloading in Handheld Devices to Coprocessors
and Clouds”. In: IEEE Systems Journal (2015).

[9] Andreas Lock. Trends of Future E/E-Architectures:
How new Architectures change the Automotive Industry.
2019.

[10] Making 5G Proactive and Predictive for the Automotive
Industry. 2019. URL: https : / / 5gaa . org / wp - content /
uploads/2020/01/5GAA White- Paper Proactive- and-
Predictive v04 8-Jan.-2020-003.pdf.

[11] Farzaneh Milani and Christian Beidl. “Cloud-based
Vehicle Functions: Motivation, Use-cases and Classi-
fication”. In: IEEE, pp. 1–4.

[12] Farzaneh Milani et al. “Energy Consumption by Cloud-
based Vehicle Functions”. In:

[13] Ihab Ahmed Najm et al. “Machine Learning Prediction
Approach to Enhance Congestion Control in 5G IoT
Environment”. In: (2019).

[14] Openstack Foundation, ed. OpenStack Foundation.
2020. URL: https://www.openstack.org/.

[15] Johannes Pillmann et al. “Empirical evaluation of pre-
dictive channel-aware transmission for resource efficient
car-to-cloud communication”. In: IEEE.

[16] Dominik Reinhardt and Markus Kucera. “Domain Con-
trolled Architecture - A New Approach for Large Scale
Software Integrated Automotive Systems”. In: 2013,
pp. 221–226.

[17] Dominik Reinhardt et al. “High Performance Processor
Architecture for Automotive Large Scaled Integrated
Systems within the European Processor Initiative Re-
search Project”. In: 2019.

[18] Matthias Traub, Alexander Maier, and Kai L. Barbehon.
“Future Automotive Architecture and the Impact of IT
Trends”. In: IEEE Software (2017).

[19] Wantanee Viriyasitavat et al. “Vehicular Communica-
tions: Survey and Challenges of Channel and Propaga-
tion Models”. In: IEEE Vehicular Technology Magazine
(2015).

[20] Huaming Wu, Qiushi Wang, and Katinka Wolter.
“Tradeoff between performance improvement and en-
ergy saving in mobile cloud offloading systems”. In:
2013 IEEE International Conference on Communica-
tions Workshops (ICC). IEEE, 9.06.2013 - 13.06.2013,
pp. 728–732.

[21] Chaoqun Yue et al. “LinkForecast: Cellular Link Band-
width Prediction in LTE Networks”. In: (2018).

[22] Bowen Zhou et al. “A Context Sensitive Offloading
Scheme for Mobile Cloud Computing Service”. In:


