
AMSA: Adaptive Merkle Signature Architecture
Emanuel Regnath

emanuel.regnath@tum.de
Technical University of Munich, Germany

Sebastian Steinhorst
sebastian.steinhorst@tum.de

Technical University of Munich, Germany

Abstract—Hash-based signatures (HBS) are promising candi-
dates for quantum-secure signatures on embedded IoT devices be-
cause they only use fast integer math, are well understood, produce
small public keys, and offer many design parameters. However,
HBS can only sign a limited amount of messages and produce –
similar to most post-quantum schemes – large signatures of several
kilo bytes.

In this paper, we explore possibilities to reduce the size of the
signatures by 1. improving the Winternitz One-Time Signature
with a more efficient encoding and 2. offloading auxiliary data to a
gateway.

We show that for similar security and performance, our ap-
proach produces 2.6 % smaller signatures in general and up to
17.3 % smaller signatures for the sender compared to the re-
lated approaches LMS and XMSS. Furthermore, our open-source
implementation allows a wider set of parameters that allows to
tailor the scheme to the available resources of an embedded device,
which is an important factor to overcome the security challenges
in IoT.

Index Terms—Hash, Signature, WOTS, IoT

I. INTRODUCTION

Security is a difficult design goal in resource constrained
IoT environments and, as a result, many vulnerabilities are
found in the IoT sector. For authenticated messages, public key
cryptography (PKC) has slowly evolved to become usable on
embedded devices due to decreased costs for general processing
power and hardware accelerators. However, quantum computers
with 50 qubits (IBM) and 72 qubits (Google) are already in use
[1] and continuously approach the point at which they will be
able to completely break currently used PKC such as RSA and
ECC [2].

Although 1000 qubits would be required to break 160 bit ECC
[2], it is unclear how fast quantum computers will evolve in the
near future and, thus, new crypto-systems need to be developed,
thoroughly tested, and broadly adopted before we reach that
threshold. With 24 billion expected IoT devices by the year 2020
[3], we need to find new solutions that are compatible with the
resource constraints of these devices.

Hash-Based Signatures (HBS) are promising candidates
for quantum-secure signatures on embedded IoT devices. For
example, the IETF considers HBS for secure firmware updates of
IoT devices [4] and NIST is currently requesting comments for
hash-based signature approval [5]. Hash functions are very fast
because no floating point operations are required and they are
often accelerated in hardware. The security of HBS only relies
on the well-studied security properties of the underlying hash
function. In most signature schemes, hashing of the message is
already required, which would allow to reuse the binary code and

With the support of the Technische Universität München – Institute for
Advanced Study, funded by the German Excellence Initiative and the European
Union Seventh Framework Programme under grant agreement n◦ 291763.

Gateway IoT ReceiverIoT Sender Internet

Database

Message Secret Key Public Key WOTS Auth Path

= ?

Figure 1: Overview of our signature architecture AMSA. An IoT Sender
creates several Winternitz One-Time Signatures (WOTS) from a private
key and offloads the authentication path – which connects the WOTS
to the public key – to a gateway. Afterwards the IoT sender only needs
to create the WOTS to sign a message, reducing the communication
overhead for the sender. If a message is sent, the gateway will append
the authentication path to complete the signature.

build a quantum secure signature based on a single, well-studied
cryptographic primitive.

However, HBS produce large signatures and can only sign
a limited amount of messages because all signing keys have
to be pre-generated before the first use. While the amount of
possible signatures can be chosen, the size of the signatures
significantly increases the communication overhead, which is a
huge challenge in IoT environments where bandwidth is limited.

A. Contributions

We have developed and implemented a lightweight, quantum-
secure, stateful Many-Time Signature (MTS) scheme for IoT
applications based on a single cryptographic hash function. Our
scheme, which is shown in Figure 1, is optimized for highly
constrained devices and allows different adaptations to make
efficient use of the available resources. In particular, we
• improve the Winternitz One-Time Signature (WOTS) to

reduce its size (Section IV-A).
• propose a novel cooperation scheme where a (non-trusted)

gateway provides parts of the signature to further reduce
the transmission load of the signing IoT device (Section V).

• provide an open-source implementation [6] that can be
adapted to specific resource constraints.

• evaluate and compare our approach to the related schemes
XMSS and LMS. We show that our scheme is secure consid-
ering current and future attack scenarios on cryptographic
hash functions.

II. ELEMENTS OF HASH-BASED-SIGNATURES

We will now introduce the core elements and working
principles of HBS, which are necessary to understand our

https://orcid.org/0000-0002-0006-7761
mailto:emanuel.regnath@tum.de
https://orcid.org/0000-0002-4096-2584
mailto:sebastian.steinhorst@tum.de

c1 c2s1 s2 s3 s4 s5 s6 s7 s8

d = 10 11 00 10 01 11 11 01 = 230213314

c3

sk

Figure 2: Concept of WOTS illustrated for n = 2 and w = 4. The
digest d is split into equally sized chunks of log2(w) = 2 bits and
each chunk is encoded by one hash-chain si. In our variant we allow
checksum-chains with different lengths which reduces the total number
of chains by one (c3 not needed).

contributions. Hash-based signature schemes generate key pairs
by using cryptographic hash functions. Most schemes first
generate several hash-based Few- or One-Time Signatures (OTS)
and later combine these with a Merkle Tree to create an MTS,
which can be used for a large number of signatures. For an OTS,
a random value (private key) is used to generate a set of secrets,
which are then individually hashed. All these individual hash
digests constitute the public key of the OTS. Since the secrets
correspond to the preimages of the hash function, it is infeasible
to guess the secrets from the output image (public key). In order
to sign a message, a certain set of the secrets is revealed and
transmitted together with the message. The receiver then needs
to verify that this set of secrets (the signature)

• uniquely encodes the message digest and
• belongs to the public key.

Revealing a unique combination of secrets can only be done
once. While some schemes allow to reveal secrets from the same
public key a few times, it will always lower its security, and for
most schemes (OTS) using them more than once already means
broken security.

In order to create an MTS based on OTS, the public keys
of several OTS are combined using a Merkle Tree, which is a
binary tree of hashes. The root hash of the Merkle tree is then
the overall public key of the scheme and each message is signed
by an unused OTS at the leafs. This structure is illustrated in
Figure 3.

In the remainder of the paper, we assume a single crypto-
graphic hash function H(·) that outputs a hash of n bytes or
N = 8n bits:

H(·) : {0, 1}∗ → {0, 1}8n (1)

A. Lamport OTS

In 1979, L. Lamport proposed the first Hash-based One-Time-
Signature (OTS) by using 2N hashed secrets in pairs of two in
order to encode a message digest of N bits [7]. The hashes of
2N secrets are distributed as public key and each pair of secrets
is used to encode one bit of the message digest d. Depending on
the bit value, one of the two secrets is revealed in the signature
while the other one is kept secret.

Message

Public Key
OTS
Auth Path
Calculated
Unused
Used

Figure 3: Hash-based MTS with two levels. The hash of the message
is signed by a Merkle signature, whose root hash is again signed by a
second Merkle signature.

B. Winternitz One-Time Signature (WOTS)

The core idea of the WOTS [8] is to sign multiple bits of the
message digest using only one secret of the private key. This is
achieved by iteratively hashing each secret w times instead of
only once, resulting in several chains of hashes. For signing, we
group log2(w) bits of the message digest d together, where w is
the so called Winternitz parameter. The grouped bits then encode
the position of a hash within the chain that will be revealed.

Since revealing any hash within a chain also indirectly reveals
all the succeeding hashes in the chain, an attacker could easily
forge a signature. For messages where the digest bits are larger
or equal to the original message in every group, the attacker
could simply reveal a hash at an increased position in the hash
chain. In order to prevent this attack, a checksum C is appended
to the message that encodes the sum of all indirectly revealed
hashes, ensuring that an attacker who wants to increase digest
bits must also decrease bits of the checksum C at the same time.
This is practically infeasible since in either case the attacker
would now need to find the preimage of a given hash.

The checksum is calculated as

C =

`1∑
i=1

((w−1)− BASEw(di)) (2)

where di is the i-th group of w bits of the message digest, w the
Winternitz parameter and `1 the number of hash chains needed
to encode the message digest d.

In total, a WOTS requires ` = `1 + `2 separate hash chains
of length w. The first `1 chains are used to encode the message
digest d and the last `2 chains are used to encode the checksum.
Both values depend on the chosen w and are calculated as

`1 =

⌈
8n

log2(w)

⌉
`2 =

⌈
log2 (`1(w − 1))

log2(w)

⌉
(3)

The public key consists of a single hash, which is calculated
as the hash of the last hashes of all hash chains concatenated
together. Note that the related approach XMSS [9] uses a binary
tree instead of concatenation to obtain a single hash.

Figure 2 illustrates an example WOTS where we use n = 16
and w = 4, which results in `1 = 8 and `2 = 3. With such
an (insecure!) scheme we could sign each log2(w) = 2 bits of

n w `1 `2 |σW| #H

10 B 4 40 4 440 B 176
10 B 16 20 3 230 B 368
10 B 32 16 2 180 B 576

16 B 4 64 4 1088 B 272
16 B 16 32 3 560 B 560
16 B 256 16 2 288 B 4608

20 B 4 80 4 1680 B 336
20 B 16 40 3 860 B 688
20 B 32 32 2 680 B 1088

32 B 4 128 5 4256 B 532
32 B 16 64 3 2144 B 1072
32 B 256 32 2 1088 B 8704

40 B 4 160 5 6600 B 660
40 B 16 80 3 3320 B 1328
40 B 32 64 3 2680 B 2144

n h |auth| |leafs|
10 B 8 80 B 3 kB
10 B 10 100 B 10 kB
10 B 16 160 B 655 kB

16 B 8 128 B 4 kB
16 B 10 160 B 16 kB
16 B 16 256 B 1049 kB

20 B 8 160 B 5 kB
20 B 10 200 B 20 kB
20 B 16 320 B 1311 kB

32 B 8 256 B 8 kB
32 B 10 320 B 33 kB
32 B 16 512 B 2097 kB

40 B 8 320 B 10 kB
40 B 10 400 B 41 kB
40 B 16 640 B 2621 kB

Table I: Typical parameters for WOTS (left) and Merkle trees (right)
depending on the underlying hash size n. |σW| is the size of the WOTS
and #H the number of hash operations to generate it.

the message digest d by one chain. The maximum checksum
would be Cmax = (4 − 1) · 8 = 24 and so we need `2 = 3
chains ci for the checksum. In our example, the checksum is
C = 24− (2 + 3 + 0+ 2+ 1+ 3+ 3+ 1) = 24− 15 = 0214.
We will explain in Section IV-A how we can reduce `2 to 2.

C. WOTS+
One problem with WOTS is that the security of the OTS is

lower than the security of the used hash function because an
attacker just needs to find a preimage for any known hash to
change the signature. This reduces the number of expected trials
until a preimage is found from 2n to 2n−`.

WOTS+ [10] mitigates the problem by using random values
~r that are XORed with every intermediate hash before hashing
it again. XORing individualizes the hash calls and ensures that
each trial in a brute-force attack is only valid for a single target
hash. However, the random values are part of the public key,
increasing its size by n(w − 1) bits, which is w times larger
compared to the conventional WOTS.

D. Merkle Tree
A Merkle Tree is a binary tree entirely made of hash values.

Every node corresponds to the hash value of the concatenation
of its two child hashes: h = H(hleft||hright). The Merkle tree is
used to link several WOTS together and create a single public
key which is the root hash of the Merkle tree.

As the name suggests, a WOTS can only be used to sign a
single message because the signature contains parts of the secret
key. In order to sign several messages with one key pair, the
secret key is used as a seed to generate l distinct WOTS. The l
public hashes of these l WOTS are then used as leaf hashes to
build a Merkle tree of height h = dlog2(l)e.

III. RELATED WORK

There are two other important implementations of stateful
hash-based signature schemes (LMS and XMSS) which we will
describe in this section. We modified their code to measure the
number of hash calls.

Name GitHub Repository Version
LMS [11] github.com/cisco/hash-sigs d2db1b2
XMSS [9] github.com/joostrijneveld/xmss-reference bb2d285

A. Leighton-Micali Signature (LMS)
LMS is a stateful HBS and actively developed as RFC 8554

[11]. LMS uses a security string that is prepended to the input
of every hash invocation to mitigate preimage attacks when
multiple images of the same hash function are known. The
security string is distinct for every hash invocation within and
between signature trees, such that any given hash image needs
to be attacked with its individual security string.

The security string is up to 21 + n bytes long and consists
of 6 parameters (I, [r|q], D, [ε|j|C]) [11]. I is a random 16B
identifier for the key-pair, r or q are the 4B index of either the
node in an authentication path call or the leaf index in an OTS
hash call, D is a 2B identifier for the context in which the hash
function is invoked, j is a 1B iteration number for the private
key, and C is a n byte random number only used when the
message is hashed.

LMS also supports a hierarchical tree structure with several
layers of LMS subtrees.

The keys are stored as privkey = (type, I, seed) and
pubkey = (type, I, hroot), where seed and hroot are both n
byte and type is four byte. The signature consists of sigi =
(i, σi, type, authi) for the i-th leaf.

The adjustable parameters are w ∈ {2, 4, 16, 256} and h ∈
{5, 10, 15, 20, 25}. The only hash function for all combinations
is SHA-256.

B. XMSS and XMSSMT

The eXtended Merkle Signature Scheme [9] consists of a
binary hash tree of height h and the 2h leaf hashes are the root
hashes of WOTS+. In the multi-tree variant XMSSMT , several
layers of trees are used to increase the total number of signatures.

In contrast to LMS, XMSS only requires a second-preimage
resistant hash function because it uses additional bit masks to
enhance security. Instead of a security string, each node of the
tree is XOR-ed with random bit masks.

The signature therefore contains the 32-bit leaf index i, the
n-byte random seed r for the masks, a WOTS+ signature, and an
authentication path, summing up to |σ| = (4 + n+ (`+ h) · n)
byte [9]. The public key consists of typestring, Merkle root, and
the seed r, so (4 + n+ n) bytes.

While the XOR masks allow to prove security in the standard
model, they also increase the amount of data needed to verify
the validity of a signature and therefore contradict our goal of
an IoT-suitable solution.

Furthermore, XMSS uses so called L-Trees to calculate the
root hash of each WOTS+, which increases the number of hash
operations compared to concatenating all top hashes in one call.

C. Further Signature Schemes
There are also signature ideas around the Distributed Ledger

Technology (DLT), such as IOTA Signature Scheme (ISS) [12]
and Blockchained Post-Quantum Signature (BPQS) [13].

ISS is IOTA’s own variant of the WOTS and removes the
checksum chains of the WOTS by balancing the digest hash
chains to the expected (mean) checksum value. In the current
implementation, ISS simply increases or decreases the message
digest until the checksum is balanced, which definitely lowers
the security. While the community discusses Proof-of-Work to

https://github.com/cisco/hash-sigs
https://github.com/joostrijneveld/xmss-reference

find a balanced WOTS, the overall idea is not mature and not
scientifically documented.

BPQS is a stateful HBS that uses Blockchain to record the
states. Each state consists of a small 2-leaf Merkle tree with two
one-time signatures, one for signing a message and the other one
for signing the root of the next state. This method allows to sign
an infinite amount of messages because the Blockchain keeps
track of the current state, such that only the current state needs
to be authenticated by the signature.

However, ISS and BPQS require all network participants to
keep track of the ledger state in order to verify a signature. This
introduces a high memory and communication overhead and
thus renders these approaches unsuitable for highly constrained
devices. As a result, we will follow their development but not
include them in our evaluation.

Furthermore, stateless schemes such as SPHINCS+ [14] are
not included in this paper, because they produce much larger
signatures (≈ 40± 10 kB).

IV. OUR ADAPTIVE MERKLE SIGNATURE ARCHITECTURE

We propose a new MTS, which we call AMSA, based on
the Winternitz One-Time Signature (WOTS). One of the main
differences is a reduced size of the signature and more parameter
choices. Our implementation is published on GitHub [6] for
review and further research. This section will describe our
optimization mechanisms and implementation details.

A. Our improved MinWOTS

We now introduce our efficient variant called MinWOTS,
which reduces the signature size while retaining the full security
of the original WOTS. Basically, we reduce the signature size
by using a separate and higher wc for the checksum bits, which
is based on the idea discussed in [15].

A typical parameter choice for WOTS is n = 16, w = 16
which results in `1 = 32, `2 = 3 for the conventional WOTS.
Here, we can encode w`2 = 4096 checksum values. However,
the maximum possible checksum value is w · `1 = 512, which
means that 3584 encodings are not used. Choosing `2 = 2 does
not work as it can only encode w2 = 256 values. We therefore
allow a different hash-chain lengthwc only for the checksum bits
to encode these bits more efficiently. In our example we would
choose wc = 23 to encode up to 232 = 529 values, leaving
only 529 − 512 = 17 encodings unused. More general, wc is
calculated as

wc =
⌈

`2−1
√
`1 · w

⌉
(4)

with `2 from the conventional WOTS as stated in Equation 3.
The found wc allows us to reduce the number of required hash
chains for the checksum by one, meaning `′2 = `2−1. For many
usable parameter sets this will reduce `2 = 3 to `′2 = 2, saving
n bytes of signature size.

Note that the maximum amount of hash operations for the
checksum also decreases from 3w = 48 to 2wc = 46, since the
full chain needs to be hashed during signing and verification.

a) Full Rootkey Hashing Another improvement we adopt
from [11] is to generate the WOTS-rootkey by hashing all
WOTS-pubkeys at once, without using a tree. This reduces the
amount of hash operations from n · (2`− 2) to n · ` bytes. For
n = 10, ` = 23 this would reduce hashed bytes from 440 to
230.

B. Security String
In order to avoid lowering the security for parallelized brute-

force attacks, we use a security string to individualize hash calls.
However, we simplify and reduce our security string to a fixed
size of 16 random bytes I , which is similar to the identifier I
from LMS.

Therefore, we adjust the first 5 bytes of I by setting them to
index values in the following way:
• I[0]: the WOTS chain index ic ∈ 0..`− 1
• I[1]: the hash index within a WOTS chain ih ∈ 0..w − 1
• I[2..4]: the Merkle node index im ∈ 0..2h+1

The remaining 11 bytes are unique for the entire key pair and
avoid attacks on several keys at once. When calculating the
message hash, WOTS public key, or during Merkle hashing,
I[0] = I[1] = 255.

This way, we ensure that no two revealed hash values, for
which the preimage is unknown, can be targeted by the same
preimage guess. Note that for each WOTS leaf, the hash calls
during WOTS chaining, WOTS public key generation, and
Merkle traversing require already different preimages by design
since they have different input lengths: n, n · `, and 2n.

C. Typecode
The specific parameter choices for n,w, and h are stored in

a typecode, which will be part of the public key. While XMSS
and LMS use 4 bytes, we use a 2 byte encoding.

Note that we allow any height h between 4 and 20 to enable
a better optimization of the scheme to the available resources.
In contrast for LMS, where h ∈ {5, 10, 15, 20, 25}, choosing
h = 15 could be already too large for embedded devices, while
h = 10 only allows to sign 1024 messages.

D. Multi-Layer Merkle Tree
We construct the Merkle Tree similar to LMS and XMSS and

allow several layers of trees.
Each Merkle tree in each layer, has its own security string and

typecode. In contrast to XMSS, where each tree in each layer
needs to have the same typecode, LMS allows different typecode
between layers but not between trees. AMSA goes even further
and allows choosing any valid parameter set for each tree.

While several layers will increase the signature size, they will
significantly reduce the keypair generation time and allow to
offload a larger fraction of the signature to a gateway, which will
be discussed in the next section.

E. Trade-off: Private Key Compression
There are several possibilities which data is stored as the

private key. The fastest signing process can be achieved by
storing all hashes of all OTSs and all Tree hashes as the private
key. During signing, all required hashes can be picked from
memory without any re-computation. While for (n,w, h) =

(32, 16, 10) this would mean storing 35MB as private key, for
(n,w, h) = (32, 256, 16) it scales to 18GB.

On the other side of the spectrum, only the initial seed for
generating all WOTS leafs could be stored but then the entire
tree needs to be recomputed for each signature [11].

Therefore, we use our own variant of the Merkle tree traversal
algorithm [16], which caches all right nodes in the Merkle tree
and only h left nodes. While the left nodes of the tree are
calculated when traversing the leafs for each new signature,
right nodes are the computationally most expensive nodes to
recompute.

The caching is achieved by storing all right nodes (odd index
starting from 0) of each level down to level h − 1 and all h
leftmost nodes during the generation of the key pair.

Whenever we use our key to sign a message, we only need
to recompute a single WOTS root (leaf hash on level h). The
other leaf hash will be cached from the previous round, such that
we always know the first hash of the authentication path. For
example, if we sign a left leaf, we will recompute the right leaf
hash. If we sign a right leaf, we have cached the left leaf hash
from the previous signature.

The remaining hashes of the authentication path can be
directly read from the cached tree hashes. Only if a left subtree
is exhausted, the cache of left hashes needs to be updated with
the root of that subtree.

In total, we cache 2h−1 − 1 right node hashes, h left
node hashes and 2 WOTS private keys summing up to
n
(
h+ 2h−1 − 1

)
+ 2n` bytes.

V. AUXILIARY AUTHENTICATION GATEWAY

We now describe our idea to reduce the effective signature
size by offloading the authentication path of a signature to a
gateway.

In a typical IoT scenario, which is shown in Figure 1, we
assume a resource-constrained IoT node, which signs messages
using an AMSA key-pair and sends them to a receiving node via
a more powerful gateway.

This gateway could now be utilized to provide the authenti-
cation paths of the AMSA signature. This would release an IoT
node from the burden of transmitting the full authentication path
of the WOTS each time it signs a message.

After generating the AMSA tree, the IoT node sends all leaf
hashes to the gateway. Note that the gateway can not use the
leaf hashes to create signatures and therefore there is no trusted
relationship between node and gateway.

When the node signs a message using a WOTS, it only sends
the WOTS and the leaf index to the gateway. The gateway
constructs and appends the authentication path to the message
before forwarding the message to the receiver. Offloading the
authentication path has several advantages:

1) The effective signature size for the IoT node is reduced.
2) The IoT node does not need to construct the auth-path and

thus only needs to store the current WOTS and the next
seed.

3) In a multi layer signature, all parts but the bottom most
WOTS could be offloaded.

Algorithm XMSS LMS AMSA ECC

|PK| 68 B 56 B 50 B 64 B
|SKmin| 64 B 48 B 50 B 32 B
|Sig.| 2500 B 2504 B * 2434 B 64 B

#Hgen 1166345 1098761 1082377 N/A
#Hsign 579 512 521 N/A
#Hverify 613 546 554 N/A

Table II: Theoretical comparison of stateful HBS schemes for n =
32, h = 10, w = 16 and ECC for n = 32 as reference. While all HBS
have similar key sizes and number of hashed calls, AMSA provides the
smallest signature. *: For normal operation. If the auxiliary gateway is
used, the signature size for the sender is 2146 B (11.8 % reduction).

a) Example If the gateway constructs the authentication
paths, then the IoT node needs to transmit 2h leaf hashes during
key generation and afterwards only the OTS. The effective
signature size for the node over all 2h signatures is:

n · 2h + n · 2h · 8nh

log2(w)

2h
= n+ n · 8nh

log2(w)
(5)

Basically, the transmission overhead for the authentication
paths per signature is reduced from h · n to only n. For h =
10, n = 20, w = 16 this would result in (840 + 20) = 860B
instead of (840+200) = 1040B, which is a signature reduction
by 17.3%. With a higher n or lower h, this percentage becomes
smaller, which is why we state 17.3 % as the possible reduction.

The efficiency for multi layer signatures is almost the same.
In case we use two layers with h0 = 10, h1 = 10 to get the
same number of signatures for the first bottom tree, we need to
also transmit the WOTS and the auth. path of the top tree which
would be additional 1040B over 1024 signatures. In summary,
this would result in (840+20+ 1040

1024) = 861.02B per signature.
Overall, utilizing the gateway for providing the authentication

path, can significantly reduce the computational effort and
transmitted data of the signed messages for the IoT nodes
connected to the gateway.

VI. ANALYSIS

In this section we will evaluate our implementation, which is
written in C, and compare it to related implementations regarding
key and signature sizes, computational performance, binary
size, and code size. The results are summarized in Table II
and Table III.

A. Performance

The speed of the scheme clearly depends on the number
of hash operations. From analyzing the call graph, we found
that 94% of the CPU time of the AMSA_sign function is spend
in the hash compression function. This means that a huge
performance improvement is possible if the hash function is
hardware accelerated.

The hash function is called with four different input lengths:
1) the length of the message, 2) n for generating WOTS chains,
3) n · ` when calculating the WOTS root, 4) 2n when calculating
Merkle nodes. Since the execution time is proportional to the
input length, we compare the approaches based on the total
amount of data x that is hashed.

Algorithm XMSS LMS AMSA uECC

|xgen| 331.6MB 60.8MB 37.8MB N/A∣∣xsign
∣∣ 468.4 kB 152.1 kB 55.3 kB N/A∣∣xverify
∣∣ 182.9 kB 27.3 kB 19.1 kB N/A

tsign on Intel i7 2.2ms 1.3ms 0.79ms 0.61ms
tverify on Intel i7 0.81ms 0.31ms 0.24ms 0.69ms
tsign on Cortex M0 3004ms 1373ms 431ms 841ms
tverify on Cortex M0 808ms 143ms 152ms 438ms

|Binary| 151.1 kB 107.3 kB 34.5 kB 36.6 kB
LOC 1.9 k 3.9 k 1.1 k 33.6 k

Table III: Experimental comparison of stateful HBS schemes and ECC
as a reference. We state computational effort as the total amount of
input |x| (in bytes) to the hash function H and as specific timings t.
We compiled each HBS for SHA256_W16_H10 and uECC [17] for secp256r1

using -O3. The LOC were counted using the tool cloc and skipped
implementations of hash functions.

VII. SECURITY

The security of a signature is based on the difficulty for an
attacker to forge a valid signature/message pair. For HBS, this
difficulty relies on the security of the underlying hash function,
which is discussed by three resistances:

1) First-preimage: difficulty to find a preimage x of one known
image h = H(x).

2) Second-preimage: difficulty to find a second preimage y
with H(y) = h of one known preimage-image pair x, h
with h = H(x).

3) Collision: difficulty to find any two values a, b that result
in the same image H(a) = H(b).

A. Preimage Attacks

Hash-based Signatures can be forged if an attacker can find a
preimage for one of the revealed hash values. However, not all
hash values are equally important.

For example, if an attacker can find the preimage of a hash
in the WOTS chain, he/she can change the signature by only a
single bit. If the checksum chain was attacked, the attacker can
change `1 bits. In contrast, another preimage for the message
hash or the WOTS Root hash would allow to sign a completely
different message. Attacking the Merkle tree is most profitable,
because in the case of success, an attacker could forge up to 2h−1

arbitrary messages. To do so, the attacker would construct a new
h− 1 AMSA tree with a public key PK ′ and then tries to find
any n-byte value x such that PK = H(PK ′||x) completing the
tree to its full height.

However, already for a 128 bit hash, it is very difficult to find
another preimage. Even if we assume the entire Bitcoin network
with a current hash rate of ≈ 80× 1018 hashes/s focused on one
128 bit hash preimage attack, it would still take an expected time
of 2127/80× 1018 = 67 billion years.

B. Preimage attacks on quantum computers

The overall performance of a quantum computer relies on
several factors including number of qubits, coherence time, and
error rates [2] and has been continuously growing over the last
years.

While the security of ECDSA and RSA would be completely
broken by Shor’s algorithm, the security of hash functions is
only reduced to half by Grover’s algorithm.

However, results from [18] suggest that a real QC preimage
attack of SHA-3-256 would require ≈ 2166 operations instead
of the theoretical optimum of 2128. In general, current research
suggests that hash functions provide at least the same security
against QC attacks compared to classical attacks when their
number of digest bits is doubled. Therefore, choosing n = 256
for HBS provides at least 128 bit security against quantum
computers.

VIII. CONCLUSION

Quantum secure schemes increase the size of signatures and
keys compared to classical schemes such as ECC. Existing HBS
implementations only allow a very narrow set of parameters,
which diminishes the flexibility of HBS.

Our AMSA leverages the large variety of parameters to enable
adaption of the scheme to the available resources of devices.
This adaption is crucial to overcome the security challenges for
constrained devices in an efficient manner.

When identical security parameters are compared to state-of-
the-art HBS, AMSA provides 2.6 % smaller signatures in general
and 17.3 % smaller signatures for the sender if an auxiliary
gateway is used.

REFERENCES

[1] B. Villalonga et al., “Establishing the quantum supremacy frontier with a
281 pflop/s simulation,” arXiv preprint arXiv:1905.00444, 2019.

[2] V. Mavroeidis, K. Vishi, M. D. Zych, and A. Jøsang, “The Impact
of Quantum Computing on Present Cryptography,” arXiv preprint
arXiv:1804.00200, 2018.

[3] A. R. Sfar, E. Natalizio, Y. Challal, and Z. Chtourou, “A roadmap for
security challenges in the Internet of Things,” Digital Communications
and Networks, vol. 4, no. 2, pp. 118 – 137, 2018.

[4] B. Moran, M. Meriac, H. Tschofenig, and D. Brown, “A Firmware Update
Architecture for Internet of Things Devices,” Internet Engineering Task
Force, Internet-Draft, Apr. 2019.

[5] NIST Computer Security Resource Center, “Request for Public Comments
on Stateful Hash-Based Signatures,” 02 2019.

[6] “AMSA Code,” https://github.com/tum-esi/AMSA.
[7] L. Lamport, “Constructing digital signatures from a one-way function,”

CSL-98, SRI International Palo Alto, Tech. Rep., 10 1979.
[8] R. C. Merkle, “A certified digital signature,” in Proceedings on Advances

in Cryptology, ser. CRYPTO ’89. New York, NY, USA: Springer-Verlag
New York, Inc., 1989, pp. 218–238.

[9] A. Huelsing, D. Butin, S.-L. Gazdag, J. Rijneveld, and A. Mohaisen,
“XMSS: eXtended Merkle Signature Scheme,” IRTF, RFC 8391, 5 2018.

[10] A. Hülsing, “Wots+ – shorter signatures for hash-based signature schemes,”
Cryptology ePrint Archive, no. 965, 2017.

[11] D. McGrew, M. Curcio, and S. Fluhrer, “Leighton-Micali Hash-Based
Signatures,” IRTF, RFC 8554, 4 2019.

[12] W. Pinckaers, “Iota signatures, private keys and address reuse?” Blog Arti-
cle, 3 2018, http://blog.lekkertech.net/blog/2018/03/07/iota-signatures/.

[13] K. Chalkias et al., “Blockchained post-quantum signatures,” in IEEE
iThings and GreenCom and CPSCom and SmartData. IEEE, July 2018.

[14] D. J. Bernstein et al., “The SPHINCS+ Signature Framework,” in
Computer and Communications Security, 11 2019.

[15] S. Even, O. Goldreich, and S. Micali, “On-line/off-line digital signatures,”
in Advances in Cryptology (CRYPTO 89). Springer, 1990, pp. 263–275.

[16] J. Buchmann, E. Dahmen, and M. Schneider, “Merkle tree traversal
revisited,” in International Workshop on Post-Quantum Cryptography.
Springer, 2008, pp. 63–78.

[17] K. MacKay, “Micro-ECC,” https://github.com/kmackay/micro-ecc.
[18] M. Amy et al., “Estimating the cost of generic quantum pre-image attacks

on sha-2 and sha-3,” in International Conference on Selected Areas in
Cryptography. Springer International Publishing, 2016, pp. 317–337.

https://arxiv.org/pdf/1905.00444
https://arxiv.org/pdf/1905.00444
https://doi.org/10.14569/IJACSA.2018.090354
https://doi.org/10.14569/IJACSA.2018.090354
https://doi.org/10.1016/j.dcan.2017.04.003
https://doi.org/10.1016/j.dcan.2017.04.003
https://datatracker.ietf.org/doc/html/draft-ietf-suit-architecture-05
https://datatracker.ietf.org/doc/html/draft-ietf-suit-architecture-05
https://github.com/tum-esi/AMSA
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.17487/RFC8391
https://eprint.iacr.org/2017/965
https://doi.org/10.17487/RFC8554
https://doi.org/10.17487/RFC8554
http://blog.lekkertech.net/blog/2018/03/07/iota-signatures/
https://doi.org/10.1109/Cybermatics_2018.2018.00213
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1007/0-387-34805-0_24
https://doi.org/10.1007/978-3-540-88403-3_5
https://doi.org/10.1007/978-3-540-88403-3_5
https://github.com/kmackay/micro-ecc
https://arxiv.org/abs/1603.09383
https://arxiv.org/abs/1603.09383

