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Abstract—The smart energy grid features real-time monitoring
of electricity usage such that it can control the generation and
distribution of electricity as well as utilize dynamic pricing in
response to the demands. For this purpose, smart metering
systems continuously monitor the electricity usage of customers,
and report it back to the Utility Provider (UP). This raises privacy
concerns regarding the undesired exposure of human activity
and time-of-use of home appliances. Photovoltaics (PV) and a
residential Electrical Energy Storage (EES) have proven to be
effective in mitigating the privacy concerns. However, this comes
at several costs: Installation of PV and EES, their subsequent
aging and the possibly increased electricity cost. We quantify
the trade-off between privacy exposure and financial costs by
formulating a stochastic dynamic programming problem. Our
analysis shows that i) there is a quantifiable trade-off between
the financial cost and privacy leakage, ii) proper control of the
system is crucial for both metrics, iii) a strategy solely focusing on
privacy results in high financial costs, and iv) that for a typical
residential setting, the costs for a trade-off solution lie in the
range of 600 US$-1700US$. As the load flattening has a peak
shaving effect desirable for UPs, increasing privacy is mutually
beneficial for both, customers and UPs.

I. INTRODUCTION

Smart grids promise more efficient, reliable, and sustainable
electricity generation and distribution thanks to the use of
information and communication technologies. Dynamic energy
pricing motivates the users to shift loads and perform demand
side management increasing the energy efficiency of the grid.
All this is enabled by the use of smart meters, which con-
tinuously monitor the load and communicate the data to the
Utility Provider (UP). The UP can then set electricity prices
to encourage customers to voluntarily shift the load out of the
peak hours. At grid scale, the avoidance of peak loads increases
load predictability and reduces the need for costly fossil-fuel
reserve generators, which enhances the energy efficiency and
reduces the carbon dioxide emission.

Privacy leakage by smart meters: The load profiles gathered
by smart meters convey private information [1], [2]. While
conventional electricity meters only record the accumulated
electricity usage over a month, smart meters allow the UP to
access real-time and fine-grained usage data. In the worst case,
if accessed by an unauthorized third party, the data can be
used to extract information on residential activities. E.g., Non-
Intrusive Load Monitoring (NILM) could be used to identify
individual appliances and respective usage profiles [3].

Prior works: Prior works have aimed at reducing the privacy
leakage by using a battery storage to modify and hide the
usage pattern of certain appliances and human activities [4]-
[7]. Other works propose distributed load shifting [8]. Also,
the impact of additional renewable energies on the privacy
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Fig. 1. The original profile seen at the smart meter can be modified through a
water filling strategy using EES and PV to increase privacy at increased cost.
We propose a cost/privacy trade-off.
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leakage rate has been investigated [7]. Generally, the proposed
algorithms either flatten [4], [5] or randomize the load [8].
Interestingly, these works overlooked an important advantage
of load flattening: Its peak shaving effect is very much desir-
able for the UP’s demand side management by increasing the
predictability of grid power and hence reducing reserve power.
Thus, load flattening is mutually beneficial for customers as
well as UPs.

While the effectiveness of the approaches in privacy protec-
tion has been well studied, there has been limited research
on the cost of privacy enhancement. There have been ap-
proaches to reduce battery energy losses [4], electricity cost
of a dynamic pricing policy [5] and maintenance cost in
terms of battery cycle life [4], [5]. However, the latter is one
of the most important factors and has not been considered
properly, mainly due to the complexity of the battery aging
models. Previous work calculates the battery degradation based
on cycle counting [5], which is very inaccurate unless very
simplistic battery usage profiles are assumed. Other works
consider the effect of Depth of Discharge (DOD) on battery
aging, but neglect other important factors such as average State
of Charge (SOC) and C-rate [4], where C-rate is defined as the
battery current relative to the battery capacity. However, it is
widely known that the battery aging not only depends on the
number of charge/discharge cycles or DOD, but also on several
other factors such as average SOC, temperature and C-rate.
As such works intend to develop sophisticated battery man-
agement policies resulting in complex battery usage profiles,
cycle life estimation will be inaccurate without considering
such factors, and proper analysis on the relationship between
the privacy enhancement and entailing costs cannot be made.
Today, battery costs are significant and they have to be properly
estimated in order to evaluate the cost of privacy protection.
Trade-off between privacy and cost: The general setup is
shown in Figure 1: An EES and PV jointly modify the power
profile such that less residential activity information can be
extracted. The power generated by the PV could be either



used directly to satisfy any household appliances or it could
be stored in the EES for later use. Similarly, electricity could
be drawn from the grid, stored in the EES and consumed at a
later point in time. An example strategy for privacy protection
would be the water filling policy [4], which completely flattens
the load profile and leaks no privacy information, see Figure 1.
This particular strategy has the additional advantage of also
being beneficial for the UP’s demand side management through
its peak shaving effect, a synergy that should be exploited.
On the other hand, costs arise from PV and EES installation
and maintenance and possibly increased electricity bills. E.g.,
larger EES sizes provide more flexibility for privacy protection,
but come at a higher installation cost. Larger PV sizes in gen-
eral provide financial benefit by reducing the use of electricity
from the grid, but their usefulness in protecting privacy should
be carefully evaluated as, if too large, they might saturate the
EES and reduce its capability of flattening out the load profile.
Apart from those sizes, EES degradation depends very much
on the usage pattern, i.e., the chosen control actions. In general,
higher EES usage increases the aging rate.

Proposed work: In this paper, we, for the first time, perform
a comprehensive analysis on the trade-off between the privacy
enhancement with concurrent peak shaving and the associated
financial overhead. To the best of our knowledge, this is
the first work to present a control strategy that not only
minimizes the privacy leakage and performs peak shaving but
also minimizes the financial cost with realistic battery aging
models. In order to jointly consider the reduction of privacy
leakage and financial costs, we synthesize an optimal controller
for a given EES and PV setup. We model a whole residential
system as a Markov Decision Process (MDP), formulate an
average reward maximization problem, and derive the optimal
controller using a relative value iteration algorithm.

The contributions of this paper are summarized as follows.

« We propose a control strategy for a system consisting of
EES and PV that minimizes both financial cost, i.e., the
sum of battery and PV depreciation and grid electricity
costs, as well as the privacy enhancement, that simulta-
neously results in peak shaving.

e We quantify the trade-off of privacy enhancement with
peak shaving and financial overhead under privacy and
financial cost optimal control strategies. Using our frame-
work, we identify the Pareto-optimal solutions.

« We achieve increased accuracy in our solution and analy-
sis by using an elaborate battery model in our framework
that is more precise compared to models in previous
works and considers SOC, C-rate and temperature.

« We identify balanced strategies that trade-off privacy and
financial cost. Towards this, we show that, while full
privacy can be achieved at acceptable but non-negligible
costs, a controlled cost/privacy trade-off based on our
methodology reduces these costs by more than half.

« Due to the correlation of privacy enhancement and peak
shaving, which mutually benefit consumer and UP, we
propose cost splitting of trade-off-strategies, potentially
creating a new business model.

The paper is organized as follows. Section II reviews privacy
concerns and shows the problem formulation. System model-
ing and controller derivation are found in Sections III and IV,
respectively. Simulation results are discussed in Section V.
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Fig. 2. Grid power of privacy focused water filling w, = 1 vs. grid cost
focused strategy wg = 1. The mutual information for the privacy and grid
cost focused strategy is 10.733 and 11.28, respectively. Data: EES 3 and PV 1,
June 4-10, 2015.

II. MOTIVATIONAL EXAMPLE AND PROBLEM STATEMENT

A number of algorithms exist for extracting privacy infor-
mation from an electricity usage trace. Among them, NILM
algorithms are capable of identifying when individual appli-
ances are turned on and off [9], and of distinguishing different
instances of light bulbs using cluster analysis [10]. This sort of
information could be exploited by malicious attackers to find
times in which the residents are routinely out of the house,
or to undesirably disclose the behaviors of the residents. One
possibility for full privacy protection would be a water filling
strategy such as the one shown in Figure 1 using EES and
PV. The EES is used in a way to hide the residential load
completely such that the power usage seen from the grid is
almost constant and maintained around a target line. On the
downside, such a strategy would extensively use the EES and
not optimize towards time-of-use prices resulting in accelerated
EES degradation in addition to increased electricity cost. In
Figure 2, we show two grid power profiles of a home equipped
with PV and EES resulting from a financial cost focused
strategy and a privacy focused strategy. In our results, we find
that the total system cost of privacy leakage reduction and
peak shaving sums up to around 1300 to 1600 US$ per year,
while a conventional, financial cost optimal set-up reduces
the electricity bill and costs around 600 US$ per year. This
high discrepancy, which is dominated by battery aging costs,
confirms the need for an improved cost analysis in particular
by using a more accurate battery aging model compared to the
ones in previous works [4], [5]. In reality, a resident who wants
a certain degree of privacy protection would desire a policy
that balances the cost and privacy. Our optimization objective
therefore is to minimize privacy leakage, battery degradation
and grid cost at the same time. A bilateral profit originates from
load profile flattening also being known as peak shaving, which
benefits the UPs’ demand side management and motivates cost
splitting among the involved parties.

Problem statement: We propose to solve this multi-
objective optimization problem by formulating a single-
objective weighted sum problem. The weighted objective con-
sists of the cost associated to buying and selling electricity to
and from the grid cg4, the battery degradation cost c¢; and the
privacy cost c¢,, here determined by the deviation of the grid
power from the average household load power. We want to
find the EES current Ipgs(t) that minimizes the sum of the
aforementioned costs over the total lifetime of the system:

T

min lim E WyCqy (t, [EES) + whch(t, IEES) + WpCp (t, IEES)7
Iggs T— o0 —0
(D

with wg, wy, and w,, being the associated weights. We need a
decision at each time instance ¢ and reformulate the objective:

Vit l;ﬂin wycqy(t, Iers) + when(t, Ieps) + wpcp(t, Iers) (2)
EES
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III. SYSTEM MODELS

In this section, we present the models required in the MDP
optimization framework: An elaborate battery cycle life model,
which is crucial for correctly assessing the financial cost,
a stochastic residential load model, a PV power generation
model, a dynamic energy pricing policy and a privacy metric.

A. Battery Cycle Life and Associated Cost

We model the Li-ion battery behavior according to the
equivalent circuit model and respective parameterization in
[11] and derive its cycle life degradation in terms of an
empirically fitted severity factor map [12]. The severity factor
Ofunct describes the amount of damage done to a battery
by its current SOC, the applied C-rate and the temperature
as shown in Figure3. This cycle life model is particularly
developed for control applications as the computational effort
is comparably low and no iterative dependencies exist. The
model is derived for Li-ion batteries, which are commonly
used in hybrid electric vehicles but also in stationary storages.
The framework can be easily adopted to other cell chemistries
by using a similar data fitting approach as in [13].

We use the severity factor oy for the controller design and
determine the actual financial loss due to EES degradation.
Assuming that a new storage is purchased at some cost of
Ckrs in US$ and that an EES that has reached its End of
Life (EOL), i.e., when 80% of the initial capacity is left, is
worth 0 USS$, we calculate the cost in US$ in dependence of
the capacity 10ss Qloss.%:

Fig. 3. Severity factor map for
25°C.
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B. Residential Load Model

We use the publicly available UMass Smart* Home Data Set
[14] to model a residential load. The data set monitors several
appliances in a home with three residents. The accumulated
load power of Home A in 2014 is used for model training and
in order to show the effectiveness of the method, other data
than the training data is used for the evaluation, i.e., Home A
data from 2015. Most times, the residential load data is in the
range of 0kW to 2kW. Rarely, higher values occur, and in
a preprocessing step these data points are removed in order
to reduce the state space of our model and simulation time.
We use six equally spaced power states whose probabilities
are shown in Figure4. We compute the transition probability
matrix Mi,q from the transition histogram for Home A in 2014.

C. PV Power Generation Model and PV Cost

PV Power Generation: The PV power generation depends on
the location and orientation of the PV cells as well as the solar
irradiance, which varies according to the cloud cover. If more
clouds occlude the sky, the irradiance is less and therefore
less PV power is produced. The data set [14], we used for
the load model, also contains cloud cover data. Similar to
the load transition probabilities, we calculate the cloud cover
transition probability matrix. We use the model from [15] to

derive the solar irradiance from the cloud cover. The model
requires the latitude and longitude associated to the cloud
cover data. Due to data protection, the exact location is not
conveyed in the data set, but the rough location is known to
be in Western Massachusetts [16]. As any location within that
region suits our purposes, we choose the latitude 42.45° and
longitude -73.2458333° of Pittsfield. The solar irradiance is
then integrated into a PV model [17]. We choose the dominant
PV characteristics, however, the refining of the model might be
possible by considering further factors, such as series-parallel
connections of panels, shading, bypass diodes and hardware
choice of microinverters.
PV Cost: Additionally to the gain from PV power selling
(Section ITI-D), the costs of installation and degradation of the
PV need to be considered. We assume a cost of 1.37 US$/W
in 2011 [18]. Then, the overall installation cost, that considers
also other factors such as the inverter, sums up to 3.43 US$/W
for rooftop use. The PV degradation rate can be estimated by
0.8% per year [19]. The EOL is reached when the PV has
degraded by 80%. We assume a linear degradation over the
resulting lifetime of 25 years.
D. Dynamic Energy Pricing

Modern grid energy price policies vary the prices depending
on the time of the day. We use the pricing schemes offered
by the Los Angeles Department of Water and Power [20] on
weekdays in June 2017. The prices are in US$ per kW h.

0.13967 US$  for 00:00-09:59, 20:00 - 23:59
cusp(t) = ¢ 0.16411 US$  for 10:00-12:59, 17:00-19:59  (4)
0.24328 US$  for 13:00-16:59

Selling energy comes at a gain of 0.145 US$ per kW h [20].
E. Mutual information

We need a metric to quantify the privacy exposure and use
mutual information as in many prior works [6], [7]. Mutual
information I(X;Y") is an information theoretic quantification
metric that describes the amount of information that one
random variable X = {x;,x2,...,x,} contains about another
random variable Y = {y1,y2, ..., yn . It is defined as

I(X;Y)=HX)+HY)-H(X,Y)

x
= X 3 vy o, P
zeX yey
The average amount of information contained in one random
variable is expressed by its entropy, H(X) and H(Y), and
H(X,Y) denotes the joint entropy. Mutual information can
also be expressed in terms of the joint probability mass
function p(x,y) and the probability mass functions p(x) and
p(y). In our problem setup, the two random variables are
the original residential grid power consumption and the new
grid power draw after the original residential load profile
has been modified using EES and PV. We use the mutual
information to evaluate and compare the performance of our
control strategies.
IV. FINANCIAL COST AND PRIVACY OPTIMIZATION
To solve the optimization problem stated in SectionIl, we
formulate an MDP average reward maximization problem
based on the component models from the previous section.
The goal is to minimize the weighted sum of electricity cost,
battery depreciation cost, and privacy exposure. We provide the
transition probability matrix (TPM), transition reward matrix
(TRM) and synthesize a controller.

®)



States, actions and reward: An MDP enhances Markov
chains by actions and rewards. The latter ones motivate state
transitions as the goal is to maximize the reward. Actions and
random variables influence the transitions between states. In
our problem, a state b € B is defined by the tuple (cc, 2,1, s)
consisting of the present cloud cover cc € CC at a given time-
of-day z € Z, resulting in a certain PV power, the load power
l € £ and the EES SOC s € S. A change in any of the four
variables results in a state transition. Changes in time-of-day
are deterministic as the next time-of-day state depends on the
previous one. The action a € A, that should be determined, is
the charge or discharge current applied to the EES. A non-zero
EES current will automatically result in a state change. The
reward R(b,b") for transitioning from one state b to another
state b’ takes values in r € R. The overall reward is the
weighted sum of privacy leakage, the EES aging cost and the
cost from buying or selling electricity to or from the grid. It
also depends on z due to the time-of-use pricing scheme.
Transition Probability Matrix: The TPM contains the prob-
ability for a transition from state b to state b’ if action a is
taken. Assuming that the cloud cover and load are independent
processes, we can simply multiply the respective probabilities:
Pra(b,b') = Prec(cey, ccy) Pry(zp, 2,) Pri(ly, 1) Prs.o(sp, sp)
(6)
The sequence of states should be aligned with time. Hence, the
probability of moving from one time-of-day to the subsequent
one is Pr,(zp,2;) = 1, while all other transitions of z have
probability 0. Contrary to the probabilities of cloud cover state
transition Pr..(ccp, cc) and load power transitions Pr(y, 1),
the SOC transition probabilities Pr (s, s;) depend on the
action a. The SOC change is largely deterministic, but the
accuracy of run-time estimation of SOC is known to be
limited, and hence, we probabilistically model the transition.
We assume that the probability of the actual SOC is uniformly
distributed around the estimate s;, from s, — s, /2 to sp+ 5, /2,
where s, is the SOC granularity. As a result, the probability
of the actual SOC after At, would be uniformly distributed in
a window of length s,, around s+ I.(a)At/3600 where I.(a)
is the C-rate corresponding to a. We omit the exact equation
for Prs q(sp, ;) due to space constraints.
Transition Reward Matrix: The objective of the problem is
to find a policy 7(b) that defines an action a to be taken when
in state b. The average reward over an infinite time window
should be maximized:

T
lim E[Y " Ra(by)],
t=0

T—00

)

where R, (b;) is the instantaneous reward with respect to state
b; at time ¢, and a is the action to be taken when in b;. In our
work, the instantaneous reward R,(b,b’) when transitioning
from state b to b’ is the weighted sum of the inverse normalized
costs for battery depreciation cp, norm, grid related expenses
from buying or selling electricity ¢y norm and action a induced
privacy leakage cp norm:
Ra(bv bl) :wg(]- - Cg,nurm(bv b,)) + wh(]- - Ch,norm(ba b/))
+ wp(1 = €p nom (b, V),

(®)
where the wg, wy,, and w,, are the respective weights. Due to
normalization, we let the sum of the weights equal 1.
Battery aging, grid and privacy cost: Let us now see how
the individual costs are calculated. The health or cycle life

TABLE I
MAXIMUM AND MINIMUM COSTS

0% SOC, zero discharge current
max. grid selling of PV and EES power
no diversion from target value

tunct (0, 0, OEES)
—R(],maxAthSD,peak
Cp,max = U.

j Cj,max

h otunct(1, Ic,max,Ogrs) 100% SOC, highest possible C-rate

9 Py maxAtcysp,peak max. grid power Py max at peak hours
p | Pg,max — pl- max. grid power

J Cj,min

h

g9

p

cost is determined by the severity factor for the given SOC sy,
the C-rate stemming from action a and the temperature fgps.
Assuming a perfect cooling, the latter is constant.
Ch(bv b/) = f(sba a) = Ufunct(sbv Ic(a)7 QEES) (9)
The grid cost is determined by the amount of power drawn
from the grid Py, which can easily be derived from the
required load power, the cloud cover dependent PV generation
and the EES power using the following relation: Pggs =
Pioad — Ppv — P,. The grid electricity cost at a particular
time-of-day is applied for period At.
cg(b,V) = fla,ce, 2,1) = Py(a,ce,l)Ateysp(z)  (10)
Finally, we model the privacy cost as the diversion of
the grid power P; from a defined target value p. From an
information theoretic perspective, such flattening of the power
profile effectively reduces mutual information and simultane-
ously achieves peak shaving.
cp(b, V) = fla,ce, z,1) = |Py(a,ce,l,z) —p|  (11)
The target value p equals the average load power reduced by
the average PV generation. The average load power can be
estimated from past values, i.e., the average load over a year.
Even though the PV generation is subject to high seasonal as
well as daily variations, in a real system, the PV generation
for a particular day can be estimated from weather forecasts.
We synthesize different controllers for discretized levels of PV
generation. Above costs are normalized using the maximum
and minimum cost from Tgble I:

ci(b,b .
Cj norm(b7 bl) = j( , J € {97 h7p}
’ |Cj,max - Cj,min|

Solution: The solution of the MDP is a policy that defines
an action a for each state that maximizes the long term
expected reward. The MDPToolbox from [21], that is used to
solve our optimization problem in MATLAB, implements a
relative value iteration algorithm to find the controller which
maximizes the long term average reward. The interested reader
may refer to [22] to get more information on the algorithm.

V. SIMULATION RESULTS

In this section, we provide the simulation and evaluation
results of the controllers derived above.The evaluation is done
on a custom developed simulator in MATLAB. Additionally to
the models, we consider converter efficiencies for connecting
EES and PV to the grid. We compare three EES and three
PV sizes, as shown in TableIl, and vary the weights of the
cost function. The sizes of EES2 and 3 are the two smallest
commercially available Tesla Powerwall storages [23]. EES 1
has half the capacity of EES 2. The sampling time At =1800s
is the same as the one used in the load data set and is also
typical for smart meters. The number of discrete states for EES
SOC S, cloud cover C'C and load power L is 21, 9 and 6,
respectively. The number of discrete actions, i.e., the number
of discrete EES current levels, depends on the EES size and
is 51, 126 and 251 for EES 1, 2 and 3, respectively. The EES
is maintained at § =25°C, the initial SOC is Si,;v = 0.5

— Cj,min

(12)



TABLE

I

PARAMETRIZATION FOR EES AND PV SIZES

TABLE III
DSE SELECTED RESULTS - PV 1, EES 2
idx.  EES [kWh] PV [kW] wy wj, wp Fin. Cost mutlnf
11 135 1 3 3 3 1009.30  11.029
12 13.5 1 1 0 0 637.05 11.195
13 13.5 1 0 0 1 1692.00  10.730
14 13.5 1 0 1 0 641.72 11.229
15 13.5 1 0.5 0 05 1540.70  10.733
16 13.5 1 0.5 0.5 0 641.72 11.229
17 13.5 1 0 05 05 1407.60  11.006
18 13.5 1 0.4 02 04 1377.00  10.908
19 13.5 1 0.4 04 02 641.10 11.230
20 13.5 1 0.2 04 04 1260.70  10.969

parameter EES1 EES2 EES3

nominal size 6.75kWh 13.5kWh 27kWh

purchase cost 5k US$ 8k US$ 15.4k US$

Prss min,PESS,max ~ £2.3kW +4.59 kW +9.18kW

e, max 4.3kW 6.59kW 11.18kW

# actions a 51 126 251

parameter PV1 PV2 PV3

Pev out TkW 3KW 5kW

purchase cost 3430 US$ 10290 US$ 17150 US$

T T T T
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Fig. 5. DSE: Trade-off between privacy (low mutual information) and the
total cost of ownership for EES and PV combinations and different strategies.
The selected node labels link to the indices in Table III.

and the EOL=0.8. We find that the grid power target level p
should vary depending on the predicted PV power generation
on a particular day. It changes based on the weather prediction
and has a discretization granularity of 0.25kW steps. The
predictor does not need to be perfect as the error could easily
be compensated.

Privacy-cost trade-off: We are interested in the Pareto-
optimal settings in terms of EES size, PV size and weights.
Figure 5 shows the financial cost versus the privacy leakage,
which is equivalent to the degree of peak shaving. Different
data points within a data group, defined by PV and EES
size combinations, denote results for different weight values.
As expected, higher weights for a particular reward come
with better performance for the reward, but a worse one for
other rewards. Strategies with high grid weight generally show
lower cost but higher privacy leakage. Strategies with high
privacy weight generally result in higher cost but lower privacy
leakage. However, the gain in one domain is not always linear
with the loss in another domain and hence a DSE approach
is applied to ensure the best quality of control achieved at
the lowest financial cost. The Pareto-front is depicted as a
dashed line. We can observe a trade-off relationship between
the financial cost and the privacy leakage. The spread of mutual
information may seem small at the first glance. But the grid
power profiles of this seemingly low difference actually differ
very much. As shown in Figure 2, the grid power profile for
a privacy-optimal strategy, w, = 1, with mutual information
10.733 is relatively flat, while the profile for a grid cost optimal
strategy, wy = 1, with mutual information 11.28 has much
higher variation. The controllers synthesized with a particular
combination of weight values, namely the ones whose results
are part of the pareto-front, perform a better job even though
the EES and PV sizes are the same. This shows the significance
of our approach: the quality of control is crucial in achieving
these Pareto-fronts.

Dimensioning of PV: In Figures5 and 7, we can study the
impact of varying PV and EES sizes on mutual information
and financial cost. We find that all points at the Pareto-front use
the smallest PV size, PV 1. Larger PV sizes do not reduce the
mutual information as the EES looses flexibility in storing grid
power to flatten the grid profile. From the information-theoretic
perspective on the similarity of two random processes, more
mutual information exists between a profile selling PV power
to the grid and the original profile than a flatter profile and
the original profile. In future work, instead of either storing
or selling the PV power, a third option could be to not use
excess PV power. From Figure 5, we also observe that no clear
impact of PV sizes on the financial cost is visible. With larger
PV sizes, more energy can be sold to the grid, but the cost of
purchasing the PV is also higher.

Dimensioning of EES and quantification of costs: We find
that, if the best control is performed, all EES and PV sizes
achieve good financial costs while larger EESs result in better
(lower) mutual information values as more energy can be
stored and hence, a flattening of the grid power is easier to
achieve. We find that combinations of PV 1 with EES 1 and 2
achieve good trade-offs when an appropriate controller is used.
The annual costs for the Pareto results of PV 1 with EES 2, as
shown in TablelIll, are about 600 US$ (data point12) for a
financial cost focused strategy, and 1700 US$ (data point 13)
for a privacy focused strategy. The costs of trade-off strategies
naturally lie in between. E.g., the more balanced scheme of
data point 11 results in much lower costs of 1000 US$. Note
that the cost for the smallest EES 1 is lowest for a purely
aging focused strategy if PV 1 and 2 are installed. This means
that the EES cost cannot be compensated by grid gains. For
all other cases, the lowest total cost occurs for a grid price
focused strategy.

Let us now analyze the contribution of the grid, PV and
aging cost to the overall financial cost. Figure 6 shows a cost
breakdown for EES 2 and PV 1. As expected, the PV cost is the
same for all controllers as it only depends on the PV size. The
EES aging cost strongly depends on the respective controller,
where high aging cost comes with a reduction in mutual
information and higher grid cost. The accumulated grid cost
from buying and selling to the grid varies less in comparison
to the EES aging cost. Given the high impact of aging on the
overall cost, it may be tempting to assign a high weight to
wy,. However, purely aging optimal strategies, w;, = 1, are not
advisable for real employment as they result in keeping the
EES at a low SOC without charging or discharging. Adding
some aging-awareness will however result in increased cycle
life and hence minimal long-term financial losses.

Cost overhead for existing installations: Assuming that
several owners of already existing EES and PV systems may
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Fig. 7. Cost overhead: total ownership cost reduced by grid strategy cost.
Max. privacy for existing EES and PV costs a) 750 US$ and b) 900 US$. The
node labels in (b) link to the indices in Table III.
desire to switch from a purely grid optimal strategy to a
strategy that improves their privacy, the cost overhead for
EES 1,2 with PV 1 is shown in Figure 7. The cost overhead is
determined by the total cost of ownership (aging + grid + PV
cost) reduced by the cost that arises for a grid cost optimal
strategy (wy = 1). Note that in few cases, the aging optimal
strategy may be cheaper than the grid optimal strategy resulting
in a negative cost overhead. However, a purely aging-focused
strategy would mean not to use the EES which can be consid-
ered as being poorly dimensioned EES and PV combinations
and the respective data points may be ignored. Again, the
trade-offs between privacy and financial cost are achieved by
selecting appropriate controllers.
Cost splitting: Another interesting analysis our framework
provides is whether UPs could come up with a specialized
contract to encourage load flattening for users with EES and
PV. This is beneficial for the UPs in that they could better
provision and manage the electricity grid, and also for the
users whose privacy is preserved. However, as indicated from
our results, the high battery aging costs result in high costs of
flattening. Nevertheless, load flattening could be subsidized by
the UP by providing lower rates. Consider the example in Ta-
ble III: The yearly EES, grid and PV costs for a flat profile are
approximately 1692 US$, 682 US$ and 137 USS$, respectively
(data point 13). On the other hand, a financial cost focused
strategy entails EES, grid and PV costs of 70 US$, 430 US$
and again 137 USS$, respectively (data point 12). Hence, the
cost of flattening the profile entails additional aging cost of
1055 US$ from the consumer side. This value is much larger
compared to the grid cost, which makes it impractical for the
UP to come up with a reasonable full compensation scheme.
However, in future, when the battery price is expected to drop
continuously, the UP could introduce specialized contracts,
which motivate the consumers to perform load shaving and
concurrently protect their privacy.

VI. CONCLUDING REMARKS

Privacy leakage is a serious concern of smart metering
systems and discourages some users from taking advantage
of them. However, the installation of an EES and renewable
energy sources can improve privacy while preserving the
benefits of smart grids. We present a framework, which allows

us to investigate the privacy-cost trade-off. It is based on
accurate system models, and hence, provides the most realistic
estimations so far. We show how EES and PV size, and also the
weights of the cost function impact the privacy leakage, grid
cost and aging cost. As for designing the controller, sensitive
data such as PV location and load power histograms are
required, future work should also investigate the controller per-
formance under more generic assumptions and the applicability
of machine learning. While finding the Pareto-optimal points,
we observe that i) proper control of the system is crucial for
performance, ii) a strategy solely focusing on privacy results
in high financial costs, iii) significant privacy enhancement for
a three residents home comes at acceptable but not negligible
cost, and iv) when the user increases privacy, the UP benefits
from peak shaving and should partially compensate costs.
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