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ABSTRACT
Verification is essential to prevent malfunctioning of software sys-
tems. Model checking allows to verify conformity with nominal be-
havior. Asmanual definition of specifications from such systems gets
infeasible, automated techniques to mine specifications from data
become increasingly important. Existing approaches produce spec-
ifications of limited lengths, do not segregate functions and do not
easily allow to include expert input. We present BaySpec, a dynamic
mining approach to extract temporal specifications from Bayesian
models, which represent behavioral patterns. This allows to learn
specifications of arbitrary length from imperfect traces. Within this
framework we introduce a novel extraction algorithm that for the
first time mines LTL specifications from such models.

KEYWORDS
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1 INTRODUCTION AND RELATEDWORK
Software systems are increasing in complexity, resulting from grow-
ing numbers of dynamically interdependent components, distribu-
tion of softwaremodules and interacting functionalities and features.
Complete verification of such systems in terms of both functional-
ity and communication is needed to ensure system reliability. Veri-
fication of software often uses specifications and model checking to
identify locations with deviations from nominal behavior in a trace.
Specifications are either defined manually, extracted automatically
from program code or extracted from traces from execution. Man-
ual approaches become intractable, due to high system complexity
and limitations of the human cognition, yielding erroneous or incom-
plete specifications. Hence, there is the need for scalable automatic
specification mining approaches. In this work we present BaySpec,
a dynamic approach to extract formal specifications from histori-
cal traces, which is illustrated in Fig. 1. While existing approaches
are mostly sequence-based (i.e. working directly on a trace), we pro-
pose to aggregate temporal and causal functional behavior in a ma-
chine learning model to subsequently extract formal Linear Tem-
poral Logic (LTL) specifications from the model. The learning of
Bayesian Networks (BN) to represent functional behavior is well
studied in the Data Mining community. Therefore the focus of this
work is on the extraction of specifications from trained models. We
show, that this approach yields more precise and expressive speci-
fications than existing approaches in a reasonable runtime. This is,
as existing approaches are template based (i.e. find only known pat-
terns), do not segregate functions, cannot be optimized incremen-
tally and are less robust. Using BNs levers out those limitations as
its probabilistic compact representation allows robust learning of
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Figure 1: The proposed specification mining approach BaySpec starts from a
given trace of events (indicated as circles), finds groups of similar behavior and
uses those to train Bayesian Networks. By finding and merging most likely
paths, specifications of appropriate strictness are found. The framed steps indi-
cate the focus of this work.

causal event correlations, enables experts to interact and incremen-
tal improvement by adding samples. To enable extraction of mean-
ingful specifications from such models, for the first time, an extrac-
tion approach is presented in this work. The basic idea is that sequen-
tial processes consist of events, where each event is a node in the
BN and edges between nodes represent temporal causality between
events (e.g. event A=a causes event B=b with prob. 0.3). Therefore,
any likely path through the BN is a likely sequence of events which
was observed in the data. Such likely paths represent likely behav-
ior and are thus, potential specifications. Extraction is challenging
due to the following reasons. Valid LTL: Translating a BN into LTL
semantic is difficult as nodes represent probabilistic occurrences of
sequences rather than strict paths (e.g. as in automatons). Strictness:
Resulting specifications need to be meaningful, i.e. neither too strict
nor too soft. Complexity: With growing size BNs increase in com-
plexity. Thus, effective path inspection is required.Noise: Noisy data
result in variations of probabilities and structure of the BN. This re-
quires effective merging strategies to find valid specifications. Path
search: Finding paths ofmaximal average likelihood requires tomod-
ify existing shortest path algorithms.
Related Work: “Specification mining” algorithms can be catego-
rized as static [1, 7, 17, 18] or dynamic [2, 3, 5, 9–11, 13–15, 21].
Static miners infer specifications from program code, while dynamic
miners extract specifications from simulation or execution traces.
The scope of this work focuses on dynamic miners. Existing dy-
namic miners are the following. Model-based: In [2] specifications
are extracted by learning probabilistic finite automata (FSA) that
represent temporal, as well as data dependencies from traces of cor-
rect system behavior. This is extended in [14] by prior cleansing
and clustering of traces. FSAs that satisfy binary properties of three
different types are found by the approach in [3], which improves
precision through refinement and coarsening. Such approaches pro-
duce automata, that are hard to interpret and whose complexity in-
creases with growing functionality. This e.g. aggravates expert in-
put.Non-model-based: Perracotta [21]mines two-event temporal pat-
terns from execution traces. These patterns can then be chained to-
gether to form larger rules. Javert [10] also uses chaining rules to
construct more complex specifications from simpler patterns. Such



approaches miss out some rules and thus, deliver only partially com-
plete solutions [14]. Also, a single violation of a pattern prevents it
from being mined, thus, requiring perfect traces. Perracotta is ex-
tended in [13] to mine temporal properties of hardware designs. Re-
sponse patterns between sequences of events are inferred in [15]. In
contrast to our work, those approaches do not separate functional
processes, making them prone to produce false positives. Daikon
[9] infers invariants of values of program variables and in [11] Tex-
ada is introduced, which finds instances of user-provided property
templates of arbitrary complexity. However, this only allows to find
known patterns and misses out properties of any other structure.
In temporal assertion mining approaches were proposed for verifica-
tion of hardware designs [4, 6, 19]. Unlike BaySpec, such approaches
often exploit system design knowledge and tend to produce hard-
to-read properties. Also, different than those approaches BaySpec
is applicable to any behavioral process that can be expressed as a
Bayesian Network.
Thus, existing approaches do not separate functionality, are less in-
terpretable and are either unable to find properties of arbitrary length
or exhibit high false positive rates. This makes them inapplicable for
specification mining in imperfect traces that contain multiple func-
tions. We tackle those issues with our approach BaySpec.
Contributions: First, we introduceBaySpec, an approach that learns
BNs to robustly represent functional behavior of imperfect traces.
Second, two approaches for extraction of specifications of appropri-
ate strictness from BNs are proposed in Sec. 3 and Sec. 4. Third, exist-
ing algorithms only supports summation, for finding shortest paths.
We require shortest paths in terms of averages and thus, in Sec. 2
for this we present an extended version of Yen’s algorithm, that is
generally applicable.
Overview: The proposed miner consists of the following steps (see
Fig. 1). First, real world traces originate frommultiple functional pro-
cesses. Those traces are split into subtraces, each containing data
from one function only, as specifications should be defined within
one functional scope. Second, all subtraces of a group are used to
train a BN that captures causality between events and represents
temporal processes in an aggregated manner. This allows to reduce
noise and allows for expert input at this step, e.g. by removing edges
which are learned from noise. Third, as this BN now contains all
branches of behavior of a functional process, individual specifica-
tions need to be extracted. This is done by finding the most probable
paths in the BN. However, usually those paths contain behavior that
is too strict, and thus, needs to be softened such that the level of con-
fidence of found specifications is neither too high nor too low. We
solve this by merging similar paths until a metric is met (approach 1:
Sec. 3) or by additionally validating those on a second BN (approach
2: Sec. 4) learned from the same functional process.

2 FINDING MOST PROBABLE PATHS
We assume that functional segmentation was performed and a BN
from one functional process is given. Next, in this section a shortest
path search is presented that allows to extract the most probable
behavior from such a model.

2.1 Mining Graph Conversion
Temporal and causal dependencies of functional processes are cap-
tured by the BN. As causalities between trace-events are represented
as edges, a path with strong causal dependencies (i.e. high condi-
tional probabilities) among its nodes is likely to represent a candi-
date specification of the BN’s function. This is comparable to the
extraction of single paths along various branches from a process
model, with the advantage that temporal causality between events
is captured. To be able to adjust strictness of specifications multi-
ple such paths are required and found using path search. Existing
search approaches for solving this, find the maximum a posteriori
hypothesis (MAP) for particular RVs (best configuration of a BN),
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Figure 2: A Bayesian Network with two states 0 and 1 per node is shown on the
left and the resulting Mining Graph after conversion is shown on the right.

which cannot be used here as the set of RVs has to be determined
beforehand. Other algorithms for finding most likely paths, e.g. the
Viterbi algorithm [20], are defined for one parent per node only and
hence cannot find paths in BNswithmultiple parents.We solved this
by marginalizing out parent-nodes per candidate path to receive a
weighted graph called Mining Graph (MG) (see Fig. 2). This graph
can now be searched for likely paths, i.e. candidate specifications,
using the approach proposed in this section. Network Structure:
Our approach is valid for arbitrary BNs. However, to capture tem-
poral specifications a defined structure is used that captures related
events of multiple sources, as exemplified in Fig. 2 (left). There, each
RV is an event in the trace, that can have multiple states and each
dimension corresponds to one source that produces events (e.g. in
Fig. 2 a and b). Interdepending events are connected via edges, as a
subsequent events of the same source (e.g.a0 anda1). In real data this
could be the states of a lamp e.g. lamp0 ∈ {on,of f }. Further, during
parameter estimation we assume the BN to store histograms of the
number of intermediate events seen between two RVs under given
conditions. From this BN a Mining Graph is extracted as follows.
Definition of Mining Graph: Given a BN (G,Θ), with graph G
and parameters Θ over RVs X, a Mining Graph is a DAG (V̄ , Ē), with

V̄ =
©­«
|X |⋃
i=1

|ΩXi |⋃
j=1

ϑi j
ª®¬ ∪ {s, t}

E(X ) =
{(
ϑim ,ϑjn

)
| ϑim ,ϑjn ∈ V̄ ∧

(
Xi ,X j

)
∈ E

}
E(s) =

{
(s,ϑim )

�� ϑim ∈ V̄ ,Xi is the first instance of a RV
}

E(t ) =
{
(s,ϑim )

�� ϑim ∈ V̄ ,Xi is the last (not first) instance of a RV
}

Ē = E(X ) ∪ E(s) ∪ E(t )

The set of vertices V̄ consists of a vertex for each discrete value a
RV Xi ∈ X can take and two additional vertices s and t represent-
ing an artificial start and terminal vertex, respectively. s and t are
required as we define those as start and target nodes for the shortest
path search. The set of edges Ē contains an edge between two ver-
tices from V̄ if their corresponding RVs Xi and X j are connected in
the BN. Vertex s is connected to all vertices of initial RVs per source
(RVs with index 0). Vertex t is connected with all vertices whose RVs
is the last instance per source. To avoid paths with a single vertex,
vertices of a single-instance RV are not connected to t , prohibiting
paths like (s,ϑi j , t).
Edge weights and Marginalization: Per edge in the MG a unique
weight value is required, while in the BN the probability of a RV’s
value is given by multiple parents. Thus, to enable shortest path
search in the MG, the following marginalization of parent RVs is
required at each vertex in the BN to find its edge weights. For a tar-
get node X j of an edge (Xi , X j ), let
Y
(
e =

(
ϑim ,ϑjn

) )
= {Y1, . . . ,Yk } B Par(X j ) \ {Xi } be the set of all

parent RVswithout source node’s RVXi . The conditional probability
P(X j | Xi ) is defined as

P (X j |Xi )=
∑
Y1 · · ·

∑
Yk

(
P (X j |Xi ,Y1, ...,Yk )·P (Y1)·... ·P (Yk )

)
. (1)

Let Par(Xi ) B
{
R1, . . . ,Rp

}
. The marginal probability of P(Xi ) is

defined by

P (Xi )=
∑
R1 · · ·

∑
Rp

(
P (Xi |R1, ...,Rp )·P (R1)·... ·P (Rp )

)
. (2)



Algorithm 1:
Minimum Average Edge Weight Path (modified Dijkstra)
Input: graph G , start node ϑs , target node ϑt , root path πr
Output: minimum average edge weight path from ϑs to ϑt given πr

1: V ∗ = reachable(G,start)
2: V ∗.topologicalSort( )
3: for each vertex v in V ∗ do
4: distance[v] = new map(default = infinity)
5: previous[v] = new map(default = undefined)
6: distance[ϑs ][πr .edges] = πr .probability
7: while not V ∗.isEmpty( ) do
8: u = V ∗.pop(0)
9: for each neighbor v of u do
10: for each edges, avg in distance[u] do
11: if u is s or v is t then
12: newAverage = distance[u][edges]
13: edges = edges−1
14: else
15: newAverage= (edges · avg+weight(u, v)) / (edges+1)
16: if distance[v][edges+1] > newAverage then
17: distance[v][edges+1] = newAverage
18: previous[v][edges+1] = u
19: return previousToPath(previous, ϑs , ϑt )

The functionw assigns a weight to each edge and is defined by

w(e=(ϑim,ϑjn))=


0 if ϑjn = t
0 if ϑim = s
1 − P

(
X j = x jn | Xi = xim

)
otherwise

(3)

With this, the edge weight between a node ϑim (denoting RV Xi =
xim ∈ ΩXi ) and a node ϑjn is 1 − P

(
X j = x jn | Xi = xim

)
. If X j has

further parents besides Xi , the probability P
(
X j = x jn | Xi = xim

)
is calculated by marginalization using (1) which uses (2) to calculate
the marginal probability. Edges to t and from s have weight 0.

2.2 Minimum Average Path Search
We assume that most likely paths in the BN are desired and cor-
responds to potential specifications. Thus, we aim to find all most
probable paths in the MG that exhibit a maximum average likeli-
hood pmin (i.e. a minimum average edge weight wmax = 1 − pmin).
Existing k-shortest path search algorithms look for paths with min-
imum length by considering summation of edge weights. In case of
BN this would prefer shorter paths in terms of lower number of
edges, thus limiting the length of candidate specifications. There-
fore, we aim to maximize the average path likelihood. Existing ap-
proaches do not support finding paths of minimum average weights
and do not stop based on ametric, but rather find the k shortest paths.
Also, sidetrack-based k-shortest path algorithms, e.g. Eppstein’s al-
gorithm [8], cannot be used for minimum average path search, thus,
we extend Yen’s search [22] algorithm to find paths of minimum av-
erage edge weight, in the following manner.
First, we stop searching paths if a metric of a path falls below a given
threshold. Second, in its kernel, Yen needs to use our modified Dijk-
stra algorithm (listed in Alg. 1) to find paths with minimum average
weights for a given start and end node. This modification is required,
as when searching minimum average
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Figure 3: Lim-
itations of Dijk-
stra Algorithm.

paths, greedy algorithms, e.g. Dijkstra’s algorithm,
can result in non-optimal solutions, e.g. in Fig. 3 tak-
ing a local optimum would not lead to an optimal so-
lution. For b the path with minimum average path
weight is (a,b). But, the globally best path depends on
the number of edges taken so far and the edgeweights
to come, so that the path with minimum average edge
weight is (a,x ,b, c). We solve this in our algorithm by
remembering for each vertex the best path for every
number of edges reaching that vertex (initialization
in lines 4-6). A further loop is added that not only it-
erates over all neighbors of a vertex u but also over all best paths

Algorithm 2:
Metric based approach
Input: paths P , target range
Output: specifications s

1: D = editDistances(P )
2: s = [ ]
3: for each path pi ∈ P do
4: r = pi.toRegex( )
5: for each path q ∈ P sorted by Di− do
6: r.merge(q)
7: if r.isRedundant(s) then
8: break
9: if metrics in target range then
10: s .removeRedundantRules(r )
11: s .add(r )
12: break
13: else if any metric surpasses target range then
14: break
15: return s

with a different number of edges reaching u (line 10). The new av-
erage path weight is computed in lines 11-15 where edges including
vertices s and t have to be handled separately as those nodes are
neglected. This results in a candidate set of likely paths in the BN.
Those resemble a set of strict temporal properties of the system.

3 METRIC-BASED PATH MERGING
Likely paths in a BN already express temporal specifications of the
system, e.g., if we require a path to be present in the trace in its found
order. However, those properties are too strict and thus meaningless,
as they are rarely satisfied by traces under test. To overcome this,
with Alg. 2 we propose successive loosening of properties, such that
resulting properties are still strict enough, e.g. not trivial or even a
tautology. The basic idea is to find most similar paths (from the set
of found paths) and iteratively merge those until looser specifica-
tions are obtained, that lie within a defined strictness range (defined
by literal ratio, combination count, conformity). This is explained in
the following by first, introducing our similarity metric (Levenshtein
distance), which is an edit distance commonly used to measure dif-
ferences in terms of modifications between two sequences, and then
describing the algorithm.
Levenshtein matrix and distance [12]: The Levenshtein matrix
Mπa,πb ∈ Nm×n for two pathsπa = (a1, . . . ,am ) andπb = (b1, . . . ,bn )
is recursively defined by

M
πa,πb
i0 =

∑i
k=1wdel , M

πa,πb
0j =

∑j
k=1wins ,

M
πa,πb
i j =


M

πa,πb
i−1j−1 if ai = bj ,

min


M

πa,πb
i−1j +wdel

M
πa,πb
i j−1 +wins

M
πa,πb
i−1j−1 +wsub

otherwise ,

wherewdel,wins andwsub are weighted costs for deleting, inserting
and substituting a symbol. In our approach we set wdel = wins =
wsub = 1. The Levenshtein distance L (πa ,πb ) between two paths
πa = (a1, . . . ,am ) and πb = (b1, . . . ,bn ) is given by M

πa,πb
mn where

Mπa,πb is the Levenshtein matrix for πa and πb .
i) Calculating edit distances between paths: To ensure more sim-
ilar paths to be merged first, similarity between paths is computed
in line 1 of Alg. 2. The order in which paths q are merged with a
starting path p is determined by the Levenshtein distance between
them. If two paths have the same distance to a starting path, the path
with the higher average probability is merged first. All pairwise com-
puted Levenshtein distances are stored in a symmetrical matrix D.
For a set of paths P = {π1, . . . ,πm } the edit distance matrix D ∈

Nm×m is defined by its elements(
Di j

)
0≤i, j≤m = L(πi ,πj ) (4)



literal ?-quantifier alternation
a a? (a | b)

delete a? a? (a | b)?
substitute with c (a | c) (a | c)? (a | b | c)
insert c (at end) a c? a? c? (a | b) c?

Table 1: Edit operation rules for regular expressions.

Also, the minimal number of editing operations (insertion, deletion,
substitution) that are required to transform one path into the other
is called the minimum edit distance.
ii) Merging paths: To be able to merge paths, we represent them
as regular expressions (regex) such that any path π = (ϑ1,ϑ2 . . . ,ϑn )
results in a strict regex ϑ1 ϑ2 . . . ϑn of n single literals. Each literal
resembles a RV and its value (e.g. a0 = 1). However, for better read-
ability we use one symbol for such pairs. Path translation to a regex
happens in line 4. As we deal with finite paths, a reduced syntax is
used, which contains the ?-quantifier and the alternative notation
|, where e.g. (a | b)c, matches either a path ac or bc. Two regexs can
be merged by the edit operations delete, substitute and insert to give
new regexs matching at least both input expressions (line 6). Table 1
lists all rules for edit operations on each of the three regex symbol
types, e.g. when substituting a literal a with c it results in a looser ex-
pression (a | c). The order of edit operations is derived using the Lev-
enshtein matrix of the two expressions. For this the order in which

a c D
0 1 2 3

a 1 0 1 2
b 2 1 1 2
c 3 2 1 2
d 4 3 2 2

Table 2: Backtracking

to execute the edit operations is precomputed
using a “backtracking” algorithm, which
searches a non-increasing path within the
LevenshteinmatrixM fromMmn toM00. This
is performed during merging in line 6. Thus,
the edit operation list for two paths π1 and π2
is computed as follows. Given the algorithm
is currently at Mi j , for a step to the left an
insertion of symbol π2j at position i is added, for a step upwards a
deletion at position i is is added and for a diagonal step to the upper
left, where the value at the upper left is lower, a substitution with
symbol π2j at position i is added to the list. The operation positions
refer to positions in the path π1. For a diagonal step to the upper left,
where the value at the upper left is not lower, no entry is added to
the operation list, as then symbols are equal. After computing the
edit operations, the two expressions are merged by executing the
corresponding merge operations defined in Table 1, e.g., the paths
π1 = (a,b, c,d) and π2 = (a, c,D) are transformed into the regexs
abcd and acD respectively. Merging them results in the new regex
a b? c (d |D) by applying the rules for delete and substitute from Ta-
ble 1. Table 2 shows the Levenshtein matrix for those expressions
with the highlighted backtracking path.
iii) Metrics: The stop criterion for merging paths is defined by the
current strictness of the specification measured as literal ratio and
combination count. For this a target range is defined for both crite-
ria. The literal ratio is the ratio between the number of single literal
characters and the total number of symbols in the expression. The
combination count is the total number of paths in the BN that match
the current specification, e.g., the regex a b? c (d |D) has a literal ra-
tio of 0.5 and matches abcd, abcD, acd and acD, giving a combination
count of 4. If both metrics fall into the acceptance window, merging
stops and the regex is added to the result list (line 9). If one met-
ric overshoots its acceptance the regex is dismissed (line 13). From
the resulting specifications, symbols with a ?-quantifier are removed
from the front and end of each regex as they do not add relevant in-
formation to the property
iv) Conversion to LTL: All found regexs are converted into a LTL
formula of events, premises and conclusions in the shape below, such
that it becomes applicable for model checking on traces. This for-
mula specifies that if the premise is found in the trace, the conclusion
must follow.

formula B G(premise)
premise B event→XG(premise) | event→X(conclusion)

| event→XF(conclusion)
conclusion B event | event ∧X(conclusion)

| event ∧XF(conclusion) | event U (conclusion)

Event: An event represents a symbol of the regex. For a literal the
event is just the literal itself, for an alternation the event is the dis-
junction of the alternation’s literals, e.g. (a | b | c) results in the event
(a∨b∨c). Thus, literals and alternations are converted to those sym-
bol types. Premise: To ensure that the expression matches only in lo-
cations on the trace where the exact behavior is present, a premise
is used. The premise comprises a prefix of symbols from the regex
that is unique within all combinations. Only if this premise is given
the LTL check is executed. Conclusion: The conclusion comprises all
symbols of the regex that are not part of the premise.
Statistical regex conversion: To be able to convert paths into a LTL
formula of appropriate strictness, the right symbol between two path
elements is required. To be able to assess the required strictness,
during learning of the BN a histogram of numbers of events that
occurred between two nodes is counted and stored per edge. Subse-
quence: Subsequent events in a regex (e.g. ab) can either result in a
"next" X, implying b to appear immediately next, or in a "finally" XF
operator, which implies b to appear eventually in the future.1 In this
case, the further conversion is used if the number of intermediate
traces makes up a higher percentage than a threshold (we say it has
intermediate noise) and else the latter conversion is applied.
?-Quantifier:As symbolswith ?-quantifier (e.g.a?b) are optional, those
are translated into the "until" U operator (e.g. aU b). Similar to the
case above, this requires all as until a b occurs to be directly subse-
quent and thus, the number of intermediate events between all as
until a b occurs to be zero. If this is not satisfied, the ?-quantified
symbol is omitted (e.g. a?b results in b).
Multiple ?-Quantifiers:Multiple consecutive ?-quantified symbols, e.g.
a?b? c?d , are translated recursively in a similar manner. Starting
from the last symbol d we recursively check whether the preced-
ing ?-quantified symbol has intermediate noise. If no noise is present,
the corresponding symbol is translated to the "until" operator U. Else,
all ?-quantified symbols left to the current symbol are dropped, e.g.,
given (a?,b?) as the only pair with intermediate noise in a?b? c?d
results in the LTL formula b U c U d .
v). Removal of redundant specifications: Single merging can re-
sult in meaningless specifications. Thus, after each merging step we
measure the expressiveness of the found specification. As soon as
the current specification is the result of merging paths that already
made up another found specification, the current iteration is termi-
nated and the specification discarded (lines 7 and 10).

4 COMPARISON-BASED PATH MERGING
Using only the stated metrics as a measure of appropriate strictness
is a good solution when only one BN is available. However, when
only metrics are included as a stop criterion, the method might keep
merging longer than required. Also, behavior between systems or its
instances might differ (e.g. due to system modifications or environ-
mental conditions). This results in structural variations of BNs that
are learned from individual instances of the system. Thus, including
multiple such BNs for specification mining can be exploited to find
traces of appropriate strictness by using a second BN, called valida-
tion model, to decide when to stop merging paths.
Both BNs differ in structure, but as both BNs resemble the same sys-
tem behavior the same specifications should likely be present. Thus,
in our extended approach, which is presented here, merging paths
filters out this structural noise such that a specification with validity
in both BNs is found. For this, during merging, each path is checked

1XF is used to allow two equal successive events which is not possible by using F only.



on the validation model and accepted if a minimum average likeli-
hood is achieved on it. This additional stop criterion is explained in
this section. The resulting algorithm is identical to Alg. 2, except that
after line 2 Kval = Aval.toKripke() is inserted and lines 5 to 14 are re-
placed by the following code, with validation BN Aval as additional
parameter.
1: for each path q ∈ P sorted by Di− do
2: r.merge(q)
3: if r.isRedundant(s) then
4: break
5: if any metric surpasses threshold then
6: break
7: if ModelCheck(r, Kval) then
8: s .removeRedundantRules(r )
9: s .add(r )
10: break
Comparison-based stop:Checkingwhether a regex that represents
merged paths exists in the validation model is done using model
checking tools. The found specification is only accepted if at least
one path in the validation model matches the regex formula and ex-
hibits the sameminimum likelihood. Lastly, besides structural checks
a metric based check is performed as well. If the literal ratio falls
below or the combination count is above a threshold, merging is
stopped to avoid specifications that are too soft.

5 SYNTHETIC EVALUATION
In this section BaySpec is evaluated on synthetic data2.
Dataset: Synthetic data is generated by sampling frommultiple BNs,
with the structure defined in Sec. 2 and by time shifting each sampled
sequence. Each BN represents one functional process of the system
and RVs per BN are unique across all BNs. BNs can be modified in
terms of probability distributions, as well as numbers of nodes, edges
and states. Per BN a validation BN is generated by removing cross-
edges, i.e. edges between nodes of different dimensions, from the
original BN. To simulate dominant behavior of functions, the CPD
of a randomly picked state per RV is set between 0.6 and 1.0. Gen-
erated BNs exhibit 4 to 5 dimensions, 4 to 5 nodes per dim., 2 states
and 0.8 · #nodes cross-edges to 3 other dims. per dim. The minimum
literal ratio and maximum combination count is set to 0.5 and 2.5n/2

respectively, where n is the regex’ number of symbols.
Metrics: Complexity of learned specifications is measured by height
and unique event count of the resulting LTL formula’s syntax tree.
The height is the number of nodes between the root and the deepest
leaf. The unique event count is the number of leaves with different
events. The frequency of specifications of certain complexity is mea-
sured. More frequent specifications of higher complexity are desired,
as this corresponds to better expressiveness. The False-Positive (FP)
Rate is the percentage of specifications that are falsely learned. In
our scenario this corresponds to specifications that contain events
from more than one functional process (i.e. from RVs of different
BNs). Lastly, the runtime of the approaches is measured.
Setup: Experiments are conducted on a Lenovo™ T480s equipped
with two Intel® Core® i5-8350U 1.70GHz CPUs with 16 GB of RAM.
Further, BaySpec is run without refinement of the histogram.
Evaluation of proposed Mining: First, we run the comparison
based approach on synthetic data produced by one BN and its val-
idation BN for 50 scenarios. Averaging produces the results shown
in Fig. 4. On the left, we vary the validation BN’s structure by ran-
domly removing 0 to 75 % of cross-edges from the original BN for sev-
eral minimum average weight thresholds pmin. More removed cross-
edges result in less found specifications, as more paths need to be
merged which softens the property to be found in the validation BN.
This shows that stricter specifications are found from more similar
BNs. Further, higher pmin require more expressive specifications to
be mined only, which can be seen as curves with higher pmin pro-
duce less specifications. Thus, pmin allows to parameterize the level
2Python Implementation: https://github.com/arturmrowca/bayspec

of strictness in our approach. Second, both approaches (metric and
comparison-based) are compared by testing 2 model sizes with (di-
mension, nodes per dimension) of (4,4) and (5,5), each sampled 50
times randomly. As Fig. 4 (mid) shows, the metric based approach
finds more specifications as it is only restricted by pmin and the tar-
get range for literal ratio and combination count which are set to [0.5,
0.8] and [2n/5, 2n/2] respectively, where n is the regex’ number of
symbols. The comparison based approach is additionally restricted
by the BN structure, i.e. adding a validation BN with 20% removed
cross-edges increases strictness and thus, meaningful specifications.
Further, for both approaches too highpmin result in nearly no specifi-
cation, while low pmin produce potentially many and thus, meaning-
less properties. Third, runtime of the comparison based approach
(together with Mining Graph extraction and path computation) is
measured by averaging over 50 models of above structure (Fig. 4
(right)), when pmin is increased at various removed cross-edge ra-
tios ξ . Results are normalized with the average BN size. Lower pmin
result in higher runtimes as more paths are found and thus, more
merging and model checking operations are performed. Also, with
less than 4 seconds our approach shows reasonable runtimes.
Evaluation against existing approaches: Given our discussion in
Sec. 1, Perracotta [21] and Synoptic [3] were chosen for comparison,
as both are among the most prominent state-of-the-art approaches.
We extended Synoptic such that it is able to find specifications with
a confidence below 1 (i.e. to handle imperfect traces). To compare
complexity, we randomly sample from BNs to get trace sets of di-
verse complexities, i.e. we vary the number of traces per trace set and
the number of sampling repetitions within one trace, both between
2 and 5. These trace sets are used as inputs for the tools. In the vali-
dation BNs, 20 % of cross-edges are removed and pmin is set to 0.85.
Resulting complexities are illustrated in Fig. 5 (left and mid), with
bigger circles indicating more frequent occurrence of complexities.
It can be seen that first, BaySpec’s extraction produces more vari-
able arbitrary length patterns of higher complexity, which results
from capturing longer sequences of event correlations. In a second
experiment, shown in Fig. 5 (right), we randomly select an increas-
ing number of BNs from a pool of 50 BNs to produce trace sets of
multiple functions (each BN as one function). All miners were run
on this trace set, where we assume that BaySpec learned the ground
truth models. The FP ratio is measured for the compared approaches.
In the validation BNs, 30% of cross-edges are removed andpmin is set
to 0.8. In BaySpec, mined specifications might match paths that were
not used duringmerging. Thus, we consider properties with a combi-
nation count bigger than the number of merged paths as FPs. Other
approaches tend tomix functional behaviors and, thus, produce high
numbers of FPs, while prior segmentation in our approach results in
specifications with less FPs.

6 CASE STUDY: AUTOMOTIVE SOFTWARE
Background andGoal: In vehicles Electronic Control Units (ECUs)
exchange sensor signals to run its software. To ensure the correct
functional behavior of the software, traces are recorded from invehi-
cle networks. Each signal represents a certain event type, i.e. dimen-
sion (e.g. driving state, speed, indicator state) [16]. Processes of those
signals and causality between events of those signals can bemodeled
as BNs of the shape described in Sec. 2. Structure is learned using
a constraint-based discovery approach and parameters are learned
using Maximum Likelihood estimation. With this, we model the in-
dicator behavior. The indicator light is switched on by a driver using
the handle bar, when turning left or right. This function consists of
a handle that (de-)activates the indicator either in steady mode or for
3 seconds. This influences the state of the indicator (e.g. left indicator
on). Depending on this, in steady mode synchronization is started
and a new indication cycle begins. Once the handle changes back to
its default state from the 3 second state, depending on this state syn-
chronization is stopped. If it is in steady mode, it is only stopped with
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Spec. 1: Avg. likelihood = 0.910:
G(handle=tip down
→ XF(state=left indicator on
∧XF state=both indicators off))
Spec. 2: Avg. likelihood = 0.831:
G(handle=tip up
→ XF(handle=no action
∧XF state=both indicators off))

Figure 6: Left: Original and validation BN for the indicator activation function. Mid: Height and number of unique events of found specifications for three
approaches, with circle size being frequency of occurrence. Right: Minimal examples of found specifications.

the handlebar returning to default by the user. This network that is
learned from 223 process segments is shown in Fig. 6 (left).
SpecificationExtraction: Wedivide the data into 2 subsets to learn
an original and a validation BN as proposed in Sec. 4 and apply our
approach to extract specifications with pmin = 0.8. The resulting
complexity of extracted specifications is shown in Fig. 6. The plot
shows that the resulting specifications are still expressive and of var-
ious length as circles are on the top right, while existing approaches
result in lower complexity specifications. Further, we validate the re-
sults using expert knowledge. Two minimal examples of found spec-
ifications are shown in the table in Fig. 6. Those results show that,
even in a noisy environment of real world traces, specifications of
good quality can be foundwith the proposedmodel-based approach.

7 CONCLUSION
We presented the BaySpec approach for dynamic specification min-
ing. Further, we proposed two approaches to find LTL formulas of
appropriate strictness and compared those to existing approaches.
We showed that BaySpec finds specifications of arbitrary length and
higher complexity, while producing less false positives.
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