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Abstract—Short drive range due to limited battery capacity

and high battery depreciation costs persist to be the main
deterrents to the wide adoption of Electric Vehicles (EVs). High
power battery packs consisting of a large number of battery
cells require extensive management, such as State of Charge
(SOC) balancing and thermal management, in order to keep
the operating conditions within a safe and efficient range. In this
paper, we propose a novel State of Health (SOH)-aware active cell
balancing technique, which is capable of extending the cycle life of
the whole battery pack. In contrast to the state-of-the-art active
cell balancing techniques, the proposed technique reduces the
load current of cells with low SOH using the active cell balancing
architecture. Based on the observation that assigning the smallest
possible load current to cells with lower SOH extends cycle life,
the technique identifies the most beneficial charge transfers. We
find that with our proposed scheme, aging could be mitigated by
up to 23.5% over passive cell balancing and 17.6% over active
SOC cell balancing.

I. INTRODUCTION

Electric Vehicles (EVs) are seen as one of the promising
alternatives to combustion engine vehicles as they have very
low cost per mile and environmental impacts. The market-
share of EVs is still small, but signs of a transition towards a
fully electrified powertrain are evident. Despite the optimistic
forecasts, major shortcomings of EVs persist, such as i) the
range anxiety due to limited battery capacity and ii) high
battery depreciation costs due to State of Health (SOH) degra-
dation. Even though battery prices are expected to drop in the
near future, either manufacturers or EV owners bear the costs
for a battery which will eventually become unusable within
the EV and therefore be disposed due to capacity loss. This
is undesirable from both the economic and the environmental
perspective. If implemented, our method can help in saving
several thousands of dollars.

Typically, Lithium-ion (Li-ion) cells are preferred for such
high power applications due to their high energy and power
densities compared to other rechargeable battery chemistries.
As shown in Fig. 1, a high power battery pack is formed
by connecting multiple Li-ion cells in parallel to increase the
capacity and connecting these parallel cell modules in series
for achieving the required high operating voltage. In order
to ensure safe and efficient operation, Li-ion cells demand a
tight control over their operating conditions. Operation outside
their defined set of safe thresholds will reduce their cycle life
and probably damage them, causing fire or explosion due to
thermal runaway.

The capacity fading rate of Li-ion cells depends on vari-
ous factors, such as operating temperature, average State of
Charge (SOC) and SOC swing and it is generally known
that high average SOC, high temperature, and large SOC
swing are detrimental for aging [1]. While the SOH of each
cell degrades, the usable capacity of the series-connected
cells is determined by the cell with the lowest SOH. With
repeated charge/discharge cycles, the SOH of all cells tends
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Fig. 1: A battery pack consisting of Np parallel electrically indistinguishable
cells and Ns series connected cells varying in SOH. CU is the unusable
capacity due to capacity fading. The required charge is CD = IDTP. Using
an active cell balancing architecture, the amount of charge transferred is CB =
IBTP. The effective charge transferred between cells is CC.

to diverge due to manufacturing inhomogeneities and varying
temperature distribution. This also contributes to an early
disposal of the battery pack from the vehicle, since current
regulations demand replacement of the entire EV battery pack
if any cell in the pack reaches 70% of its SOH value.

Conventional balancing approaches are passive, where the
excess charge of cells with higher SOC is dissipated as heat
across a resistor, resulting in a reduced energy efficiency.
By contrast, active cell balancing approaches increase the
energy output of the battery pack by transferring the ex-
cess charge between cells instead of dissipating it as heat.
However, existing active cell balancing approaches only focus
on equalizing the SOC at all times and inherently partially
contribute towards increased cycle life [2]. By optimizing the
load current assignment, the cycle life can be significantly
improved further.

In this paper, we focus on the fact that the EV batteries are
not always used to their full capacity in every drive cycle, and
hence, it is not necessary to keep SOC equalized at all times.
For instance, a typical usage profile of an EV is shown in
Fig. 1 where the pack follows a driving pattern that consists
of five small commuting trips during weekdays followed by
two longer trips on the weekends. It is not mandatory to
always maintain an equal SOC among all cells when the entire
battery capacity will not be used within a single cycle. Existing
methods of remaining range estimation [3] help to estimate
the available SOC margin. Estimating the required charge to
reach a predefined destination is crucial to enable autonomous
driving and further advances are expected to be made in this
domain. We propose to leverage this headroom for mitigating
battery SOH degradation using a state-of-the-art active cell
balancing architecture [4] by reducing the load current of the
less healthy cells.

In particular, we propose the following contributions.
• Active cell balancing reduces stress on less healthy cells

and extends cycle life. We show that this effect can be
further exploited and cycle life is significantly extended
(Sec. III).

• We propose a novel SOH-aware active cell balancing



technique that adapts load currents to further mitigate
aging (Secs. IV and V).

• Compared to passive and conventional active balancing,
experimental results show that our technique improves
cycle life by 23.5% and 17.6%, respectively (Sec. VI).

II. RELATED WORK

SOH degradation mitigation in EVs: There are various
approaches to mitigate the SOH degradation of EV batteries.
An often used method for aging reduction is the charge pattern.
A cost and SOH-degradation optimized charge pattern can
be achieved by charging slowly, and charging shortly before
the trip starts, which reduces temperature rise, and lowers the
average SOC, respectively [5]. Instead of the charging pattern,
the authors of [6] control the EV’s heating, ventilation and air
conditioning system to extend battery runtime and cycle life.
In addition, battery pack reconfiguration techniques can also
be used to improve the SOH. The work in [7] proposes to
connect cells with similar SOH levels in order to increase
available capacity in one cycle. However, such reconfigurable
systems have significant efficiency limitations due to the on-
resistance of reconfiguration switches. The work in [2] shows
that compared to passive balancing, active SOC balancing
narrows the capacity distribution among cells on the long term
and increases cycle life. Our work overlays on this finding by
proposing a methodology to even further increase this effect.
Active cell balancing: A comprehensive overview of different
cell balancing architectures is provided in [8]. Typically,
the existing active cell balancing approaches are classified
into capacitor-based, inductor-based and transformer-based,
depending upon the type of energy storage element used
for charge transfer [9]. Among them the inductor-based ap-
proaches are more preferable since they provide a higher
energy efficiency compared to the capacitor-based architec-
tures and also occupy a smaller installation volume when
compared to the transformer-based counterparts. In addition
to the electrical architectures, several equalization strategies
are proposed in the literature that determine optimal charge
transfer direction between the cells to equalize the SOC of
the battery pack. For instance, four different request-driven
equalization strategies are proposed in [10]. However, existing
works in the domain of active cell balancing only focus on
equalizing the SOC of all cells in the pack and do not consider
SOH, which we do in this paper for the first time.
Online SOH measurement: The proposed SOH-aware cell
balancing technique requires an online SOH measurement
that can be implemented in the Battery Management System
(BMS). An overview of existing methods is provided in
[11]. Coulomb counting is a relatively simple online SOH
estimation method, which integrates the amount of charge
flowing in and out of the battery pack. However, it does
not consider the temperature effects and the self-discharge
current of the battery pack and therefore does not provide
accurate results. On the other hand, electrochemical impedance
spectroscopy techniques that directly measure the battery
internal impedance are more accurate. However, due to their
requirement of high accuracy measurements and complex
signal processing tasks, they are typically performed offline in
a laboratory. Recently, the work of [12] suggests a real-time
electrochemical impedance spectroscopy technique, paving the
way for high accuracy SOH estimation at the BMS level.
SOH estimation is continuously improving. However, SOH
estimation techniques are not in the scope of this paper. Note
that our proposed SOH-aware balancing methodology can be
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Fig. 2: (a) Operating principle of an inductor-based active cell balancing
architecture proposed in [13]. (b) A higher current (ID + IB) is discharged
from healthier cell B1 whereas cell B2 sees a reduced current (ID − IB).

implemented in conjunction with any of the existing SOH
estimation techniques in the literature.

III. OBSERVATIONS FOR ACTIVE CELL BALANCING

In this section, we first explain the operating principle of a
state-of-the-art inductor-based active cell balancing architec-
ture, upon which the proposed technique is built. Then, we
provide some key observations, which form the groundwork
for the strategies introduced in this paper.
Operating principle: A state-of-the-art inductor-based active
cell balancing architecture, as proposed in [13], is shown in
Fig. 2a. Each cell is associated with a balancing module that
consists of two power Metal-oxide-semiconductor field-effect
transistor (MOSFET) switches (M i

a and M i
b) and an energy

storage element, inductor Li. Charge transfer between cells
takes places in two phases, charging (Φ1) and discharging (Φ2)
that are controlled by two high frequency control signals ρ1

and ρ2, respectively. During the charging phase Φ1, MOSFET
M1
b is actuated with ρ1 and the excess charge in cell B1 is

stored in inductor L1. During the discharging phase, M1
b is

turned OFF and M2
a is actuated with ρ2 transferring the stored

energy in the inductor L1 to cell B2. Short free-wheeling
phases during which the inductor current flows through the
body-diode of the respective power MOSFETs are necessary to
avoid short-circuit conditions between the cells. The balancing
current ranges from 0 to a maximum value IB and is modified
by adjusting the length of the PWM signal generated with ρ1

and ρ2.
Observations with two cells: We provide the key observations
using a simple two-cell example. Two cells are discharged
by a discharge current ID. The balancing current IB, which
is limited by hardware component constraints and costs, can
now either increase or decrease the load current experienced
by individual cells. When one cell B1 transfers charge to
another cell B2 through IB, B1 effectively has a higher load
current IC,1 = ID + IB and B2, which receives the charge,
has effectively a lower load current IC,2 = ID − IB as shown
in Fig. 2. In this section, we ignore the transfer efficiency γ
for the sake of simplicity. However, it will be considered in
Sec. V.
Observation 1: Battery aging depends on the average SOC
and also the SOC swing. Avoiding high SOC helps to mitigate
battery aging. Lower SOC swing means less severe capacity
fading [14], [15].
Observation 2: Cells in a pack age at different speeds with
temperature being the main contributor to the aging speed



ID + 0 ID + IB

base

better

balancing current increases

active SOC
balancing

SOH-aware balancing with state-of-
the-art cell balancing current limit

Cell current of healthier cell IC,1

A
ve

ra
ge

SO
H

af
te

r
on

e
cy

cl
e

(S
O
H

1
+

S
O
H

2
)/
2

im
pr

ov
ed

cy
cl

e
lif

e

Fig. 3: Average SOH of two series connected cells after one charge/discharge
cycle. Transferring charge from the healthier cell to the less healthy cell is
beneficial on the long term and increases cycle life beyond SOC balancing.

divergence [14]. In high power battery packs, cooling is usu-
ally not homogeneous. Especially in automotive applications,
where the pack volume needs to be minimized, there is a
trade-off between achievable temperature homogeneity and the
overhead introduced by the cooling system hardware. Even the
most efficient state-of-the-art cooling approaches still expose
the batteries to temperature stress when being charged or
discharged at high rates [16]. Manufacturing variations, while
depending on the cell size and quality of the manufacturing
process, are another significant contributor to cell inhomo-
geneity which eventually promotes different aging behavior
between cells [17], [18]. Also, the aging-speed slightly reduces
with decreased SOH [14], [19]. Due to permanent equalization
currents, parallel cells can be assumed to be electrically indis-
tinguishable. While serial cells built up a variation in capacity
because of manufacturing inhomogeneities and temperature
variations.
Observation 3: Resting the less healthy cells mitigates the
End of Life (EOL). With active cell balancing, the individual
cell current, and hence the average SOC and also SOC swing,
can be adjusted. The work in [2] confirms that stressing
the healthier cell more than the less healthy cells reduces
the SOH gap between healthiest and least healthy cell and
prolongs cycle life. We observe the same behavior for two
cells using the aging model from [1]. Fig. 3 illustrates the
effect of obtaining increased cycle life for higher balancing
currents. On the long term, this preserves the less healthy
cells as the EOL is determined by the least healthy cell
reaching a predefined SOH value. Note that the gain achieved
in a single cycle is small, but in the long term, the effect
significantly contributes to increased cycle life as will be
shown in Sec. VI. We propose a strategy that intensifies
this effect by further optimizing the load current assignment.
I.e., we use the maximum available balancing current, which
is only limited by component constraints of the balancing
architecture.

Based on above observations, we develop an SOH-aware
balancing strategy that increases the number of cycles of a
battery pack until EOL in Sec. V.

IV. SYSTEM MODELING

A. Battery Aging Model
Using the correct aging model is crucial for evaluating

the proposed cell balancing technique. Hence, we employ a
widely-adopted SOH model, which describes electrochemical
degradation processes by physical crack propagation mecha-
nisms over cycling and time [1]. Further experimental eval-
uation in [2] supports the model behavior. Stress parameters
are the cell temperature TB, SOC swing σ and average SOC

SOC, where the latter two along with the time interval Tm

depict the charge/discharge current.
As the cycle interval Tm may start and end at arbitrary SOC

states, the effective number of throughput cycles

N =

∫
Tm

|i(t)|dt
2Qnom

, (1)

needs to be calculated, where i(t) is the charge or discharge
current, Qnom is the nominal amount of charge that can
be stored in the battery and m denotes the m-th time the
cell is discharged and recharged between arbitrary SOCs. A
first degradation parameter accounts for the damage in mid-
centered cycles

D1 = KcoNexp
(

(σ − 1)
Tref + 273

Kex(TB + 273)

)
+ 0.2

tcycle

tlife
, (2)

where Kco is a normalization coefficient for N and Kex is a
constant exponent for SOC swing. Tref is the reference battery
temperature of 25◦C. The duration of one cycle is denoted by
tcycle and tlife is the shelf life at 25◦C and 50% SOC until
EOL. Adjusting to SOC is done in the second degradation
parameter

D2 = D1exp
(
4Ksoc(SOC − 0.5)

)
(1−D(Tm−1)) , (3)

using a constant Ksoc to account for the SOC. Finally, the
total increase in the degradation parameter L is given by

D(Tm) = D2exp
(
Kt(TB − Tref)

Tref + 273

TB + 273

)
, (4)

where Kt accounts for a doubling of the decay rate for each
10◦C rise in temperature. Summing up the damage done by
each cycle, one can derive the remaining life of the battery.

Besides the model, we define the aging-speed as degradation
per cycle: va = ∆SOH

cycle . Further, we specify the unit to be

points per million and cycle: 1×10−6

cycle = 1 ppmc. I.e., a cell
with an aging-speed of 50 ppmc will have lost 5% of its initial
capacity after 1000 cycles.

B. Cell Balancing Efficiency
We use the existing analytical model from [20], which is de-

rived for inductor-based active cell balancing architectures, to
calculate the energy efficiency of the charge transfer process.
We allow direct charge transfers only between neighboring
cells. The energy efficiency of the charge transfer process is
calculated as

γ = 1− Ediss

Etx
, (5)

where Ediss and Etx are the energy dissipated and the energy
transferred, respectively. The two major sources of energy
dissipation in the cell balancing process are the conduction
energy dissipation Ecd, due to the parasitic resistances of
the circuit components and the switching energy dissipation
Esw, due to the non-zero ON and OFF times of the MOSFET
switch. The conduction energy dissipation in a single charge
transfer cycle is calculated as:

Ecd
cyc = Qtx · VB1 −Qrx · VB2 , (6)

where Qtx is the charge transferred by the source cell and
Qrx is the charge received by the destination cell in a single
switching cycle. VB1 and VB2 are the voltages of the source
and destination cells respectively. The energy dissipation due
to the switching activity of MOSFETs in each charge transfer
cycle is calculated as

Esw
cyc =

1

2
Ipeak{tOFF ·VB1 +tON ·VB2}+ 1

2
COSS{V 2

B1 +V 2
B2}
(7)
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where Ipeak is the final inductor current during the charging
phase, tON and tOFF are the turn-ON and turn-OFF times
of the MOSFET switch and COSS is the parasitic output
capacitance of the MOSFET.

However, as we propose a high-level cell balancing strategy
and simulate long-term effects of batteries, it is impractical to
consider circuit-level details. In the following sections, we use
the average balancing current IB = 1/4×Ipeak. Also, based on
our circuit-level simulations, we find that it is safe to assume a
constant efficiency of 96% for typical VB values and balancing
currents.

V. SOH-AWARE ACTIVE CELL BALANCING

The basic idea of the SOH-aware cell balancing algorithm
is to compensate the amount of charge that is discharged
from cells with a lower SOH by transferring charge from
neighboring cells with a relatively higher SOH. We assume
that the battery management system is capable of reliably
measuring the capacity of cells. The transfer is done using
the active cell balancing architecture from Fig. 2. We assume
that the decision for the transfer direction and the amount
of the cell balancing current is made at the beginning of
each trip and remains fixed. This is sufficient as battery aging
is a comparatively slow process. The algorithm is shown in
Alg. 1. We assume that the accumulated charge required Qreq

from the battery pack is known at the beginning of each
trip. In a real-world implementation, this could be determined
by, e.g., the destination entered in the navigation system
(Alg. 1, line 1). For the remainder of this paper, we consider a
constant discharge current ID =

Qreq

TP
for our discussion of the

algorithm (Alg. 1, line 2), where TP is the duration of a trip.
This is safe to assume because using average ID is sufficient
for determining I

(k,k+1)
b in the algorithm. However, using a

time-series of ID values is possible without modifications.

The SOH(k)
i =

C
(k)
i

Cnom
of each cell is the ratio of available

capacity C(k)
i and the nominal capacity Cnom (Alg. 1, line 3).

The latter is the same for all cells. The superscript k indicates
the physical location of the cell within the series connection,
i.e., cell k is left of cell k + 1. The subscript i denotes the
position of the cell within the ordered list of cell SOHs, where
C

(m)
i ≤ C(n)

i+1 (Alg. 1, line 4). We assume that cells in parallel
are electrically indistinguishable while cells in series vary in
SOC. The discharge current of a cell I(k)

C (and hence the SOC
variation of cell k) depends on ID but it is influenced by
the balancing current I(k,k+1)

b flowing between two cells k
and k + 1. The efficiency of the transfer is denoted by γ.
Fig. 4 shows a cell k being discharged by IDTP + I

(k,k+1)
b TP

amount of charge while cell k+ 1 receives only γI(k,k+1)
b TP.

The algorithm calculates this under the assumption that the
voltage difference among cells are not drastic as we discussed
in Sec. IV-B. Accordingly, the current seen by cell k consists
of ID along with the current received by or transmitted to
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Fig. 5: Finding the concurrent charge transfers. The grouping of cells is done
by iterating through the ordered health list starting with the least healthy cell
and grouping it with the healthier neighboring cell.
neighboring cells:

I
(k)
C = ID + η(k,k−1)I

(k−1,k)
b + η(k,k+1)I

(k,k+1)
b , (8)

where η(m,n) ∈ {−γ, 0, 1} indicates the charge transfer
direction and loss. I(m,n)

b = I
(n,m)
b is independent of the

direction. If η(m,n) = 1 then m transmits and n receives
charge. If η(m,n) = −γ then m receives and n transmits
charge.
Charge transfer direction: The charge transfers between cells
happen concurrently. However, a cell can only transfer charge
to one neighboring cell at one time, not to both: η(k,k−1) 6=
0 ⇒ η(k,k+1) = 0 and η(k,k+1) 6= 0 ⇒ η(k−1,k) = 0. As
aging is a very slow process, the SOH values are updated
at a low rate, and transfer directions η(k,k−1) and η(k,k+1)

are not adjusted during a trip but only at the beginning. The
algorithm iterates through the cells sorted according to their
C

(k)
i , denoted by subscript i (health list) (Alg. 1, line 5). It

marks the healthier neighbor as charge provider unless this
neighbor is already grouped with another cell (Alg. 1, line 6).
We illustrate the rules for cell groupings in the example in
Fig. 5. The formal formulation of the rules is given in Table I.
Due to space constraints, the special cases of cells k = 1 and
k = Ns are omitted, but can be easily derived. In Iteration 1),
the least healthy cell C(3)

1 is grouped with its right neighbor
C

(4)
6 as this is healthier than the left neighbor (i = 6 > 2 > 1).

Accordingly, η(3,4) = −γ as the cell C(3)
1 receives charge

and η(4,3) = 1 as cell C(4)
6 transfers charge. Due to this

grouping, cell C(2)
2 cannot be grouped with cell C(3)

1 and
therefore, η(3,2) = 0 and η(2,3) = 0. Equally, cell C(4)

6 cannot
be grouped with cell C(5)

3 and thus, η(4,5) = 0 (Table I, line 4).
In Iteration 2), a grouping partner for the second least healthy
cell C(2)

2 is required and the healthier neighbor C(1)
5 is selected

(Table I, line 6). Finally in Iteration 3), the low health of cell
C

(5)
3 should be compensated. The healthier neighbor C(4)

6 is
already grouped, which is indicated by η(4,5) = 0. Therefore,
the right neighbor C(6)

4 , which is also healthier than cell C(5)
3

is selected and the η(m,n) are updated accordingly (Table I,
line 1+5).
Balancing currents: Next the balancing currents I(k,k+1)

b are
calculated (Alg. 1, line 9). In general, the non-zero balancing
currents should be set to the maximum balancing current
allowed by the architecture IB in order to relieve the less



TABLE I: Get the η(m,n) values depending on the already given η values
and the available charge of the two neighbors of cell C(k): C(k+1) and
C(k−1). A - means that the parameter remains unchanged.

η(k−1,k−2)/ η(k,k−1)/ η(k+1,k)/
if C(k+1)

η(k−1,k) η(k,k+1) η(k+1,k+2)

1: η(k−1,k) = 0 - -/- 0/- -/-
2: η(k+1,k) = 0 - -/- -/0 -/-

η(k,k−1) = undef.
3: η(k,k+1) = undef. > C(k−1) -/0 0/−γ 1/0

η(k,k−1) = undef.
4: η(k,k+1) = undef. ≤ C(k−1) 0/1 −γ/0 -/-

η(k,k−1) = 0
5: η(k,k+1) = undef. -/- -/−γ 1/-

η(k,k−1) = 0
6: η(k,k+1) = undef. -/1 −γ/- -/-

TABLE II: The balancing current I(ν)
b

depends on the available charge in
the two neighboring cells.

Charge Level Check
IB rel. Ch/TP Cl/TP

I
(ν)
b

1: ID > IB > ID + IB > ID − γIB Eq. 9
2: ID > IB < ID + IB > ID − γ

(
Ch
TP

− ID
)

Eq. 10

3: ID < IB > ID
(
1 + 1

γ

)
Eq. 11

4: ID < IB < ID
(
1 + 1

γ

)
> ID − γ

(
Ch
TP

− ID
)

Eq. 10

healthy cell most as explained in Sec. III, Obs. 3).
I

(ν)
b = IB. (9)

The variable ν is used as a placeholder for the cell pairs
grouped, where η(k,k−1) 6= 0 ⇒ ν = (k − 1, k) and
η(k,k+1) 6= 0 ⇒ ν = (k, k + 1). If both η(k,k−1) = 0 and
η(k,k+1) = 0 then the balancing currents I(k−1,k)

b and I(k,k+1)
b

are also zero. However, we need to consider two special cases.
Firstly, if the current IB applied over TP would prematurely
deplete the healthier cell, we need to apply a reduced current.

I
(ν)
b =

Ch

TP
− ID. (10)

Secondly, if the balancing current IB is high and the discharge
current ID is small enough, the less healthy cell could rest and

I
(ν)
b =

1

γ
ID. (11)

The decision criteria are depicted in Table II. It takes into
consideration the capacity of the healthier cell Ch and the less
healthy cell Cl. Assuming that the I(ν)

b are calculated while
iterating through the health list (i subscripts) (Alg. 1, line 8),
the following applies: η(k,k−1) = −γ ⇒ Ch = C(k−1) and
η(k,k+1) = −γ ⇒ Ch = C(k+1) and Cl = C(k). The case of
η(m,n) = 1 is similar.

VI. SIMULATION RESULTS

For this paper, we compare the SOH-aware cell balancing
algorithm proposed in Section V with an active SOC balancing
scheme and passive cell balancing. The active SOC balancing
scheme equalizes only the SOC of all cells making use of
the same cell balancing architecture for fair comparison [13].
We connect those neighboring cells which have the larger
SOC difference. But instead of applying the maximum IB,
we equalize the SOC as much as possible. If that equalization
should not be possible in TP then Eq. 10 and 11 are applied.
We believe this baseline is reasonable enough, given the fact
that most of the real-world battery packs utilize passive cell
balancing, and active cell balancing is still a field of active
research. In passive cell balancing, no balancing happens
during discharge. But when charging, all cells are charged to
full SOC. Cells that reach full charge earlier are discharged by

Algorithm 1 SOH-aware cell balancing algorithm. //Call this
function at the start of each trip

Input: destination, C(k)
i , TP

Output: I(k,k+1)
b ∀k ∈ 1...Ns − 1

1: Qreq = getQreq(destination, TP);
2: ID = getID(Qreq);
3: SOH

(k)
i = updateSOH(C

(k)
i );

4: [healthList, i] = sortCellsAscendingSOH(SOH
(k)
i );

5: for all cells in healthList do
6: [η(k−1,k−2), η(k−1,k), η(k,k−1), η(k,k+1), η(k+1,k),

η(k+1,k+2)] = getEta(C
(k)
i ); // Table I

7: end for
8: for cell k = 1...Ns − 1 do
9: [I

(k,k+1)
b ] = getBalancingCurrent(ID, η(k,k+1),

C
(k)
i , Ck+1

i ); // Table II
10: end for

resistors. This scheme has the advantage that the architecture
is simple and cheap. However, its energy efficiency is low
as excess charge is dissipated as heat, usable capacity of the
pack is smaller, and requires that there are no outliers in cell
parameters for acceptable system efficiency. However, SOH
optimization cannot be performed with passive balancing.

We simulate a battery pack with an architecture similar to
the one of the Nissan Leaf 24 kWh battery pack which features
96 cells in series and 2 in parallel (96s2p) enhanced with the
active cell balancing architecture from Sec. III. We simulate
the battery pack in MATLAB. Our model includes the aging
model from Sec. IV-A. The cells connected in series vary in
SOH and aging-speed. We assume the cells’ initial SOHs to
be uniformly distributed in the interval [0.9,1] and an aging-
speed range of [54.352, 55.264] ppmc. This is a resemblance
of the temperature inhomogeneity in a pack and the cells’
manufacturing variations. If not mentioned otherwise, we
assume a maximum balancing current IB of 5 A. We assume
the period TP to be 3600 s. The simulation runtime of one
charge-/discharge cycle is approximately 0.06 s.

In the following, we investigate the dependency of our
heuristics on (i) the balancing current, (ii) the aging-speed
range and (iii) the initial aging distribution. For the first
two tests, we initialize the cells with a fixed initial age
distribution. The EOL is reached when the SOH of the
least healthy cell reaches 0.7. We compare three dif-
ferent user profiles: light, medium and heavy user. All
three users repeat a pattern similar to the one shown in
Fig. 1. For all three users, the repeated pack SOC pattern
starts from SOChigh = [1; 1; 1; 1; 1; 1; 1] and discharges
to SOClow = [SOC2;SOC2;SOC2;SOC2;SOC2; 0.3; 0.3]
with SOC2 being 0.8, 0.6 and 0.3 for light, medium and heavy
user, respectively. As the capacity fades, SOClow is adjusted.
Dependency on Balancing Current: The gain of the bal-
ancing schemes strongly depends on the balancing current. For
the given initial SOH distribution, Fig. 6a shows that for low
balancing currents, the SOH-aware cell balancing performs
very similar to SOC cell balancing. For balancing currents IB
greater than 1 A, 2 A or 3 A of the heavy, medium, or light
user profile, respectively, the SOH-aware cell balancing clearly
outperforms conventional SOC balancing. For approximately
IB =7 A, the SOH-aware scheme stabilizes at a gain of up
to 23.5% over the passive cell balancing. The gain is similar
for all profiles. The results clearly suggest that the balancing
architecture is an important design decision. Investing in
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Fig. 6: (a) Comparison of balancing schemes with varying balancing current
IB. The aging-speed is 54.674 ppmc. (b) Comparison of balancing schemes
with varying normalized aging-speed, where 1 means that all cells age at the
same speed.

stronger balancing infrastructure can be rewarded by increased
cycle life of the battery pack. The main difference between
user profiles is the total number of cycles until EOL, where,
as expected, the battery pack of the heavy user ages much
faster compared to the pack of the light user.
Dependency on Aging-Speed: We investigate the impact
of aging-speed variations induced by temperature inhomo-
geneities by increasing the interval from zero variation (all
cells have an identical aging-speed) to a doubling of the aging-
speed (the least healthy cell ages twice as fast as the slowest
aging cell). The x-axis in Fig. 6b shows the maximum aging-
speed among a pack, normalized to a minimum aging-speed
of va,min = 54.352 ppmc. For example, the value of 1.6
denotes a normalized aging speed distribution from 1 to 1.6.
The balancing current equals 5 A. As expected, the number
of cycles decreases with increasing aging-speed. Additionally,
the gap between SOH-aware and passive cell balancing is
almost constant at a gain of up to 14.7%, 16.4%, 17.2% for
heavy, medium and light user, respectively. The gain of SOC
balancing over passive cell balancing reaches up to 11.7%,
8.2%, 7.7% for heavy, medium and light user, respectively.
Dependency on Initial Aging Distribution: As we investi-
gate the neighbor-only balancing techniques, the initial SOH
distribution strongly influences the cycle life of the pack. For
our example, we fix the balancing current to 5 A and the
aging-speed va to 54.674 ppmc, randomly generate 20 uniform
SOH distributions and calculate the mean cycle life. The
performance in terms of cycle life of the proposed algorithm
as well as passive and SOC balancing strongly depends on
the initial distribution of differently aged cells within a pack.
On average, the SOH-aware cell balancing outperforms the
passive cell balancing by approximately 12.5% for the heavy
user, 13.3% for both the medium and light user while the SOC
balancing yields gains of approximately 4.4%, 3.8%, 3.4%
over passive cell balancing on average for heavy, medium and
light user, respectively (Fig. 7). The results suggest that the
arrangement of cells varying in SOH and aging-speed within
a pack is an important criterion to be considered.

VII. CONCLUSION

Cell balancing architectures in large battery packs equalize
SOC differences between cells stemming from manufacturing
variances and temperature distribution within the pack in order
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Fig. 7: Mean number of cycles until EOL for 20 random initial distributions
of aged cells.

to increase the usable capacity within a single cycle. We show
that conventional active SOC balancing algorithms do not
make use of the full potential of the balancing architecture
in terms of increasing cycle life. We propose a novel SOH-
aware balancing scheme that increases the cycle life of the
battery pack by up to 23% by reducing the load current on
cells with lower SOH. Considering the high prices for battery
packs this leads to a massive benefit.

REFERENCES

[1] A. Millner, “Modeling lithium ion battery degradation in electric vehi-
cles,” in Proc. of CITRES, 2010.

[2] Y. Shi, K. Smith, R. Zane, and D. Anderson, “Life prediction of large
lithium-ion battery packs with active and passive balancing,” in Proc.
of ACC, 2017.

[3] J. Hong, S. Park, and N. Chang, “Accurate remaining range estimation
for electric vehicles,” in Proc. of ASP-DAC, 2016.

[4] S. Narayanaswamy, M. Kauer, S. Steinhorst, M. Lukasiewycz, and
S. Chakraborty, “Modular active charge balancing for scalable battery
packs,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, pp. 1–14, 2016, in Press.

[5] A. Hoke, A. Brissette, K. Smith, A. Pratt, and D. Maksimovic, “Ac-
counting for lithium-ion battery degradation in electric vehicle charging
optimization,” IEEE Journal of Emerging and Selected Topics in Power
Electronics, vol. 2, no. 3, pp. 691–700, 2014.

[6] K. Vatanparvar and M. A. Al Faruque, “Battery lifetime-aware automo-
tive climate control for electric vehicles,” in Proc. of DAC, 2015.

[7] L. He, Y. Gu, T. Zhu, C. Liu, and K. G. Shin, “Share: Soh-aware
reconfiguration to enhance deliverable capacity of large-scale battery
packs,” in Proc. of ICCPS, 2015.

[8] J. Cao, N. Schofield, and A. Emadi, “Battery balancing methods: A
comprehensive review,” in Proc. of VPPC, 2008.

[9] J. L. Gallardo, C. E. Romero, M. M. I. Milanes, and M. M. A. Guerrero,
“Battery equalization active methods,” Journal of Power Sources, vol.
246, pp. 934 – 949, September 2014.

[10] S. Steinhorst, M. Kauer, A. Meeuw, S. Narayanaswamy,
M. Lukasiewycz, and S. Chakraborty, “Cyber-physical co-simulation
framework for smart cells in scalable battery packs,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 21, no. 4,
pp. 62:1–62:26, 2016.

[11] M. Berecibar, I. Gandiaga, I. Villarreal, N. Omar, J. Van Mierlo, and
P. Van den Bossche, “Critical review of state of health estimation meth-
ods of li-ion batteries for real applications,” Renewable and Sustainable
Energy Reviews, vol. 56, pp. 572 – 587, April 2016.

[12] E. Din, C. Schaef, K. Moffat, and J. T. Stauth, “A scalable active
battery management system with embedded real-time electrochemical
impedance spectroscopy,” IEEE Transactions on Power Electronics,
vol. 32, no. 7, pp. 5688–5698, 2017.

[13] N. H. Kutkut, “A modular nondissipative current diverter for ev battery
charge equalization,” in Proc. of APEC, 1998.

[14] S. F. Schuster, T. Bach, E. Fleder, J. Müller, M. Brand, G. Sextl, and
A. Jossen, “Nonlinear aging characteristics of lithium-ion cells under
different operational conditions,” Journal of Energy Storage, vol. 1, pp.
44–53, 2015.

[15] T. Guena and P. Leblanc, “How depth of discharge affects the cycle life
of lithium-metal-polymer batteries,” in Proc. of INTELEC, 2006.

[16] I. A. Hunt, Y. Zhao, Y. Patel, and G. J. Offer, “Surface cooling causes
accelerated degradation compared to tab cooling for lithium-ion pouch
cells,” Journal of The Electrochemical Society, vol. 163, no. 9, pp.
A1846–A1852, 2016.

[17] M. Dubarry, N. Vuillaume, and B. Y. Liaw, “Origins and accommodation
of cell variations in li-ion battery pack modeling,” International Journal
of Energy Research, vol. 34, no. 2, pp. 216–231, 2010.

[18] T. M. Bandhauer, S. Garimella, and T. F. Fuller, “A critical review of
thermal issues in lithium-ion batteries,” Journal of the Electrochemical
Society, vol. 158, no. 3, pp. 1–25, 2011.

[19] T. Reddy, Linden’s Handbook of Batteries, 4th Edition. McGraw-Hill
Education, 2010.

[20] M. Kauer, S. Narayanaswamy, M. Lukasiewycz, S. Steinhorst, and
S. Chakraborty, “Inductor optimization for active cell balancing using
geometric programming,” in Proc. of DATE. IEEE, March 2015.


