
Automotive Electrical and Electronic Architecture
Security via Distributed In-Vehicle Traffic

Monitoring
Peter Waszecki1, Philipp Mundhenk2, Sebastian Steinhorst4, Martin Lukasiewycz2,

Ramesh Karri3, Samarjit Chakraborty4

1 Singapore Institute of Technology, Email: peter.waszecki@singaporetech.edu.sg,
2 TUM CREATE, Singapore,3 NYU, United States,4 TU Munich, Germany

Abstract—Due to the growing interconnectedness and com-
plexity of in-vehicle networks, in addition to safety, security
is becoming an increasingly important topic in the automotive
domain. In this paper we study techniques for detecting security
infringements in automotive Electrical and Electronic (E/E)
architectures. Towards this we propose in-vehicle network traffic
monitoring to detect increased transmission rates of manipulated
message streams. Attacks causing timing violations can disrupt
safety-critical functions and have severe consequences. To reduce
costs and prevent single points of failure, our approach enables
an automatic distribution of detection tasks among selected
E/E architecture components, such as a subset of Electronic
Control Units (ECUs). First, we analyze a concrete E/E system
architecture to determine the communication parameters and
properties necessary for detecting security attacks. These are
then used for a parametrization of the corresponding detection
algorithms and the distribution of attack detection tasks. We
use a lightweight message monitoring method and optimize the
placement of detection tasks to ensure a full-coverage of the E/E
system architecture and a timely detection of an attack.

Index Terms—Automotive security, distributed systems, attack
detection, embedded systems

I. INTRODUCTION

Instead of simply being modes of conveyance as in the past,
today cars are also expected to entertain and inform passengers
in a safe and protected environment. Further, they are supposed
to ease the complexity of driving by providing different
forms of assistance to the driver. To support these increasing
demands, automotive E/E architectures have become highly
complex with over 100 ECUs communicating via multiple
automotive-specific buses and gateways. Moreover, emerging
functionality like Car-to-Car (C2C) and Car-to-Infrastructure
(C2I) communication, as well as infotainment and driver
assistance systems have increased the number of vehicle com-
ponents with communication interfaces to the outside world1.
Such complex E/E and connected automotive architectures are
increasingly vulnerable to malicious attacks [1] and recent
demonstrations of attacks in production vehicles clearly illus-
trate the growing importance of this topic [2]. Considering
security side-by-side with safety is crucial for the overall
reliability of an automotive E/E architecture, since a vulnerable

This work was financially supported in part by the Singapore National Research
Foundation under its Campus for Research Excellence And Technological Enterprise
(CREATE) programme. With the support of the Technische Universität München -
Institute for Advanced Study, funded by the German Excellence Initiative and the
European Union Seventh Framework Programme under grant agreement n 291763.

electronic component might undermine the passengers’ safety
to the same extent as a faulty one [3]. However, in the highly
competitive automotive domain, the cost of security features
often pose an obstacle to their adoption.

In this paper, we present a decentralized and non-intrusive
automotive E/E attack monitoring approach that is effective
while being cost-efficient. In message-oriented networks, mes-
sage flooding and Denial of Service (DoS) attacks change
the timing behavior in message streams whose transmission
patterns are altered. Early detection of timing violations is
crucial in vehicular networks, since an increase in the ex-
pected message rate can compromise safety-critical functions,
for instance, by impeding the responsiveness in a brake-by-
wire system. Automotive E/E architectures implement timing-
critical control software where message periods and execution
time bounds are usually prescribed, such that delays and worst
case jitters can be calculated2. Since many methods to infiltrate
and disrupt automotive in-vehicle networks manifest as altered
packet transmission patterns, we propose detecting deviations
in the timing specifications of individual message streams. Our
approach does not analyze the message content but is focused
on detecting manipulations in the communication behavior.

In contrast to classic DoS attacks, our method can also
detect attacks where a service is not entirely disabled but,
for instance, carried out incorrectly. It has been shown
that some attacks increase the rate of a regular message
stream and flood the bus using highest-priority Controller Area
Network (CAN) identifiers, thereby restricting the availability
of the bus [4]. This can seriously disrupt other traffic and
associated functionality, for example, by suddenly turning off
the headlights at night [5, 6]. A discussion of existing work
on automotive security is presented in Section VI.

The approach presented here considers the guidance on
vehicle security that was recently proposed by the National
Highway Traffic Safety Administration (NHTSA) [7]. Here,
the recommended Best Practices provide a flexible and prag-
matic way to ensure security in automotive cyber-physical
systems [8]. By supporting anomaly detection in vehicle
operations, our proposed detection of message-based attacks

1Most of this data is transmitted via radio-based communication links.
2Generic computer networks are based on dynamic and unpredictable

packet transmission schemes where timing violation attacks can only be
detected when changes in the traffic are sufficiently large.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2666605

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Communication

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8

∆

|m|

SECURITY
ATTACK

SECURITY
ATTACK

REGULAR OPERATION MODE
to

αum

αlm

R
m̃

Rm

stream route period

m (orig.) BMS→PMU 30 ms
m̃ (attack) TU→PMU 20 ms

EV Architecture

TU VCM

BMS PMU

CAN m̃

m

mp

unauthorized wireless access
(remote code execution,
e.g., via buffer overflow)

at
ta
ck

de
te
ct

Fig. 1: The telematics unit (TU) of an automotive E/E architecture
is compromised and used to manipulate the communication between
the battery management system (BMS) and the power management
unit (PMU). The attack can be detected by the vehicle control module
(VCM) by testing the deviation of the manipulated stream m̃ from
the original stream m.

falls into one of the seven key security functions of NHTSA’s
Best Practices.
Motivating example. Consider the example in Figure 1 that
demonstrates the manipulation of particular in-vehicle traffic
patterns in an Electric Vehicle (EV) to disable the car’s power
supply. The figure depicts a section of an E/E architecture as
used in a best-selling commercial EV [9]. It consists of 4 ECUs
connected to a CAN bus: a telematics unit (TU) providing
a wireless connection for remote services, a vehicle control
module (VCM) evaluating, among others, ECU and sensor
signals, a Battery Management System (BMS) controlling the
Li-Ion cells and a power management unit (PMU). In EVs, to
avoid a potentially harmful battery depletion, the transmission
of energy to the motor or other electrical devices is initiated by
a torque request (e.g., by the PMU) to the BMS and has to be
accepted or rejected with a response message (message stream
m from BMS to PMU). Moreover, to ensure functional safety,
a BMS usually contains a hard-wired shut-off switch which
will cut the electrical power supply, for instance, before current
or voltage levels can fall below dangerous thresholds [10].
Let us assume, that an attacker intends to bring the vehicle
to an immediate halt. An intruder can gain wireless access
to the automotive architecture, e.g., via the TU interface or a
Bluetooth adapter for the on-board diagnostics port (OBD-
II port) [11]. After taking control of the TU, the attacker
manipulates its code to transmit a high frequency stream of
responses accepting the torque request (message stream m̃),
such that they dominate the original response message stream
m which is possibly rejecting the torque request. As it is
receiving positive responses to its torque request at a high
rate, the PMU continues to draw current from the battery
beyond the designated threshold which will trigger the shut-
down switch. Disconnected from its power source, the car will
abruptly slow down, lose its brake booster or power steering
and come to an unexpected halt.

The proposed attack detection approach uses the knowledge
of particular system components and information about es-
sential communication parameters, such as message periods
and maximum jitters. These parameters are specified during
system design and can be stored as message arrival curves

αm. The curves are compact representations of the upper (αum)
and lower (αlm) bounds for the number of message stream
events (i.e., messages) within an arbitrary time interval. As
arrival curves are easily adaptable and can be parametrized for
many different message stream patterns, they can help design
efficient and distributed attack detection tasks. We are able to
monitor the actual message streams and detect if and when
the corresponding message count violates a predefined upper
arrival curve αum

3.
In our example, the VCM can detect a transgression of

the upper arrival curve at time to = 40 ms, as illustrated in
the graph on the right side of Figure 1. After detecting the
altered message stream and identifying it as torque response
via the CAN-ID, the VCM transmits a high-priority message
mp to the PMU informing it about the malicious responses
from the BMS. The countermeasures could then initiate a
safe and controlled reduction of the torque request and warn
the driver about a serious malfunction asking him or her to
stop the car. It is important that these countermeasures are
initiated as early as possible. Moreover, should the attacker
disrupt the corresponding detection functionality on the VCM,
our decentralized redundancy-aware approach would be able
to maintain the overall detection capability by using several
distributed detection tasks for each message stream.

While there may exist other solutions to prevent the de-
scribed security attack (e.g., separate buses and firewalls), the
motivating example shall demonstrate our general approach
of detecting timing violations and emphasize its non-intrusive,
lightweight and cost-efficient aspects. We selected a realistic
architecture in current electric vehicles making the presented
method suitable and relevant for the automotive industry.
Overall, the proposed attack detection is applicable to attacks
which alter predefined message times, regardless of the entry
point of the potential malicious attack program.
Contributions of the paper. The main goal of this work is to
provide an efficient and reliable attack detection framework.
First, a fast detection algorithm is formulated which can be
efficiently implemented on each considered monitoring re-
source, such as an ECU, preferably close to the communication
controller in order to minimize latencies. This algorithm is
used to detect message streams which violate their predefined
communication parameters. The message streams are repre-
sented by specific arrival curves which efficiently describe the
earliest and latest times a message should be received and,
thus, enable a timely detection of malicious attacks on the
system communication. Second, the algorithm is implemented
in detection tasks which can be automatically distributed to the
monitoring resources while allowing the system designer to
manually adjust necessary parameters such as level of redun-
dancy and components utilization. In summary, we propose:

1) A real-time traffic conformity check to detect message-
based attacks in automotive E/E architectures.

2) An optimization-based method to efficiently distribute
these conformity checks among E/E monitoring resources
considering redundancy and utilization.

Our approach utilizes the existing communication and the
detection tasks are lightweight to ensure a low computational

3Message counts are depicted at runtime and do not represent arrival
curves for arbitrary time intervals.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2666605

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

SYSTEM SPECIFICATION

DETECTION PARAMETERS/
MESSAGE ARRIVAL CURVES

TIMELINESS OF DETECTION
(COMPONENT-LEVEL)

COVERAGE OF DETECTION
(SYSTEM-LEVEL)

analysis
detection

Communication Model
(Section II-B)

Architecture Model
(Section II-C)

Real-Time Detection
(Sections III-B and IV-A)

Distribution of Detection Tasks
(Sections III-C and IV-B)

0

2

4

6

8

10

∆

|m|

0

2

4

6

8

10

E
∆

|m|

Fig. 2: The proposed automotive security framework is built up
as follows: first, the system specification is analyzed to obtain the
necessary message arrival curves and detection parameters. These
are used to design the real-time attack detection and the distribution
of detection tasks.

and timing overhead. Distributing the detection tasks removes
the single point of failure. The proposed distributed detec-
tion method includes the entire system communication and
allows configurations that consider redundancy and individual
message streams. By contrast, while explicit security solutions
such as firewalls might, in principle, be used for detecting
timing violation as well, their implementation would involve
considerable costs and changes to the in-vehicle network, for
instance, by adding dedicated hardware and using separate
buses. Additionally, a firewall would increase the risks asso-
ciated with a single point of failure.

Finally, the focus of our paper is on the detection process for
a secure automotive E/E architecture. The potential subsequent
countermeasures are not part of this work. Furthermore, the
proposed work does not claim sufficiency in terms of a uni-
versal security strategy. While the presented approach cannot
guarantee to detect all types of security infringements, the low
implementation effort and the piggybacking on the required
E/E detection functionality offers added security orthogonal
to other approaches.
Outline. The remainder of this paper is structured as fol-
lows. Section II presents the attack detection framework and
provides a description of the communication and architec-
ture models underlying the proposed approach. The detec-
tion method is introduced in Section III and the detection
methodology is presented in Section IV. The limitations of our
approach are discussed in detailed in Section III-A. Section V
contains the experimental results which evaluate our approach
based on synthetic test cases and a case study. Finally, the
related work as well as the conclusion and future work are
presented in Section VI and Section VII, respectively.

II. FRAMEWORK AND SYSTEM MODEL

In this section, we present an overview of the security
framework before introducing the communication and archi-
tecture models.

A. Security Framework
Figure 2 depicts the general structure of the proposed

security framework. The first stage (upper part of the figure)
illustrates the system analysis while the second stage (lower
part of the figure) represents the attack detection. In the
first stage, a system specification is analyzed in terms of
its communication patterns and parameters, its applications
and the architecture structure in order to obtain the neces-
sary information for the attack detection, such as message
arrival curves. In the second stage, message arrival curves
are used to configure the real-time detection functions which
are implemented on the monitoring platforms in a distributed
manner. Additionally, the system architecture is considered
when distributing the detection tasks using parameters such as
redundancy levels and utilization and including the availability
of E/E resources with monitoring capability. The framework
will be evaluated with respect to the timeliness of detection
and the coverage of the E/E system architecture which are
used as two important metrics in safety-critical systems.

B. Communication Model
Although attack detection aims at the entire in-vehicle net-

work independent of the particular communication protocol,
it is reasonable to focus on an event-triggered buses such as
CAN. It is by far the most prevalent automotive bus often used
for safety-critical applications and CAN-based communication
has the highest risk of being exploited [12]. As a consequence,
to model the network traffic, we adopt arrival curves for
general event-based systems [13]. These arrival curves are
used to define the upper and lower bounds for the number
of observed message streams on a bus during a specified time
interval.
Message streams. A message stream m is generally described
by its event trace function µm(n) where the n-th message
arrives at time tn−1, as defined in Equation (1).
∀tn ∈ R, n ∈ N :

µm(n) = tn−1, with n ∈ {1, ..., nmax} (1)

For example, Figure 3 shows a segment of a message stream
m where six message events arrive at times t0 through t5.
Additionally, nine events of a compromised message stream
m̃ are depicted. For a message stream m, the message count
Rm[ta, tb) returns the number of messages arriving at a
communication resource in the interval [ta, tb), where ta is
included and tb is excluded from the half-closed interval. This
is formally defined in Equation (2a) with Rm(ta) and Rm(tb)
determined by the maximum number of events of the trace
function up to the time ta and tb, respectively (Equation (2b)).

∀ta, tb ∈ R+, ta < tb, n ∈ N :

Rm[ta, tb) = Rm(tb)−Rm(ta) (2a)

Rm(ta/b) = max
{
n
∣∣ µm(n) < ta/b

}
(2b)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2666605

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

t0 t1 t2 t3 t4 t5

m̃

m

t

Fig. 3: Example for two event traces. Six green event arrivals (long
arrows) represent an excerpt of a regular message stream m and nine
red event arrivals (short arrows) represent a compromised message
stream m̃.

Arrival curves. For a message stream which is not periodic
but is periodic with jitter, the message count can differ for
the same interval length [s, t) but different start times s. To
detect communication inconsistencies, we are interested in
determining the highest and lowest message count of m for
each possible time interval. This can be facilitated by the
aforementioned arrival curves. The minimum and maximum
number of messages arriving in an arbitrary time interval ∆
is bound by a lower arrival curve αlm(∆) and an upper arrival
curve αum(∆), respectively, both represented by step functions.
Given the message count on a bus which lasts for an interval
of length ∆, the lower and upper arrival curves must satisfy
Equations (3a) and (3b), respectively.
∀t ∈ R+ :

αlm(∆) = min
t≥0
{Rm(t+ ∆)−Rm(t)} (3a)

αum(∆) = max
t≥0
{Rm(t+ ∆)−Rm(t)} (3b)

An example pair of arrival curves is shown in Figure 4. The
graph depicts the number of messages in a stream m (y-axis)
which can be observed within any arbitrary time interval ∆
(x-axis). With the upper and lower arrival curves at its edges,
the shaded area in the graph is the region of the Regular
Operation Mode. Here, Rm(t) is one of the infinite number of
possible regular message streams. In this case it is representing
the message arrivals of the stream m in Figure 3, where the
observation begins at t0 and ta and tb correspond to t2 and
t4, respectively. It is important to understand, that Rm(t) does
not represent an arrival curve for an arbitrary time interval ∆
but rather the message count of a particular message stream
for a specific observation time. Hence, Rm(t) does not refer
to the x-axis of time intervals ∆ but to an x-axis reflecting the
absolute runtime t. In the graph, a separate axis for the latter
one is omitted for the purpose of clarity.

Arrival curves determination. For message-based networks
that serve mostly non-periodic communication, arrival curves
can be determined from measurement or simulation. For
example a window of length ∆ can be slid over a traced mes-
sage stream, recording the minimum and maximum message
numbers. Repeating this for different window lengths allows
the construction of the arrival curves. Some general strategies
have been presented in [14]. However, the measurement and

0

1

2

3

4

5

6

7

8

∆

|m|

2jm

pm

ta

Rm(ta)

tb

Rm(tb)

αu
m(∆)

αl
m(∆)

Rm(t)

Fig. 4: The graph depicts the Regular Operation Mode on a commu-
nication resource (shaded area). Rm(t) represents the message count
for an example message stream which does not violate the bounds
of a periodic with jitter communication defined by αl

m and αu
m. The

adherence to Equations (3a) and (3b) is shown with the example of
two message counts Rm(ta) and Rm(tb).

simulation approaches might not be sufficient as they still can
miss the worst-case arrival times of messages.

The strict real-time constraints necessary to guarantee
safety-critical functionality in automotive E/E architectures
make the message transmission predictable. This allows for
a reliable determination of the worst case timing parameters
and, hence, the construction of reliable arrival curves at design-
time. However, since during system design the arrival curves
are initially calculated based on the task release times of the
transmitting resources, the effects of existing bus traffic must
be considered to assure the correct detection timing. More
precisely, it is necessary to add delays to the nominal intervals
of the arrival curves with respect to a possible current bus
occupation and higher priority messages. For instance, in [12]
this has been done for the CAN bus.

Generally, for many automotive applications, message
streams can be modeled as periodic with jitter. In an event-
triggered architecture, the jitter in a periodic message stream is
an indicator for the variation between the inter-completion or
response times of its corresponding successive release tasks.
It can be caused by task preemption, changes in execution
times or other delays [15]. Moreover, particular bus protocols
can encounter jitters caused by the variations of the frame
length due to bit-stuffing [16]. This means that the arrival
curves αlm and αum are shifted by the maximum possible jitter
jm of a message stream m relative to a nominal period pm.
Equation (4) defines the upper and lower arrival curve for an
event-triggered system based on a periodic with jitter message
stream. A detailed derivation of these equations is presented
in [17].
∀pm, jm ∈ R+,∆ > 0 :

αlm(∆) =

⌊
∆− jm
pm

⌋
, αum(∆) =

⌈
∆ + jm
pm

⌉
(4)

C. Architecture Model
The attack detection framework employs a graph-based sys-

tem specification where software functionality and hardware
are modeled by process and architecture graphs, respectively.
Figure 5 illustrates this with two applications, a1 and a2,
implemented on a small system architecture. Here, the process

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2666605

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

t1

m1

m2

t2

t3 m3 t4

r1 r2 r3

rbus
l1

l2

l3

GP

(application)
EM

(mapping)

GR

(architecture)

a1:

a2:

RESOURCE-TO-OBSERVATION MAP

Fig. 5: Graph-based system specification. A process graph GP

consists of two applications a1 and a2 and is mapped onto a
system architecture. The latter is defined by the resource graph GR.
The specifications are used to define resource-to-observation maps
necessary for a correct distribution of detection tasks.

graph GP = (P,EP) consists of the vertices P = T ∪ M
corresponding to tasks t ∈ T and messages m ∈ M ,
respectively, as well as the directed edges e ∈ EP representing
their data-dependencies. The resource graph GR = (R,ER),
contains all system resources r ∈ R, such as ECUs and
buses, as well as the appropriate links l ∈ ER between
all architectural components. Both graphs are interconnected
through mappings EM = (P,R) which associate each process
with a particular resource.

We regard the system specification as given and our goal
is to monitor the system in an implicit manner, which means
that no additional diagnostic messages or hardware should be
used. At this level of abstraction, the detection functions are
implemented on multiple resources and can be regarded as
tasks without any data-dependencies. In order to properly dis-
tribute the detection tasks with respect to both the redundancy
requirements and a complete coverage of the monitored mes-
sage streams, a preliminary system analysis is performed. The
purpose is to define all observations describing the message
streams and their parameters which can be monitored by a
particular resource, not necessarily the transmitting one. These
observations are then stored in a resource-to-observation map
which basically associates sets of message stream data with
the appropriate monitoring resources. Later, the resource-to-
observation map is used to retrieve the necessary configuration
parameters for the distribution of detection tasks, which is
discussed in detail in Section IV.

III. ATTACK DETECTION

In hard real-time systems, an important precondition is the
ability to react to an asynchronous event within a predefined
time interval, i.e., without violating the deadline [18]. In order
to detect an attack, such as an unusual or unwanted com-
munication behavior, within a guaranteed or shortest possible
detection time, each message stream in the system must be
continuously monitored. Based on the observed occurrence of
message stream events, resulting, for instance, in a violation
of the upper arrival curve, particular security attack scenarios
can be detected.

A. Considered Attacks and Limitations

There are fundamental differences between a classic com-
puter network and an automotive in-vehicle network, for
example, regarding the safety-criticality or the predictability
in the system communication. Nevertheless, as shown in [19],
the three general security principles, namely confidentiality,
integrity and availability, can be applied in the automotive do-
main as well. A confidentiality breach enables the read access
of messages by an unauthorized entity, and an attack may hack
a resource allowing read access to the message content without
producing additional traffic. An integrity breach enables an
unauthorized creation or manipulation of messages. A possible
attack may hack a resource to pretend as another resource and
inject compromised messages into the network (e.g., with the
message ID belonging to a stream from that resource). Finally,
an availability breach interrupts one or more existing message
streams. As illustrated in the motivating example, an attack
could force one or multiple hacked resources to transmit a
large number of (possibly void) messages in order to reduce
the system’s availability or overwhelm it. In this work, we
consider availability attacks.

Our attack detection does not claim sufficiency or represent
a universal security strategy for automotive E/E architectures.
For example, attacks targeting confidentiality, such as message
sniffing, and specific integrity breaches, such as single message
injection, might not alter the traffic in a way that is detectable
with the proposed algorithm. Consequently, many attacks
will require own special security solutions which are not
covered here. The presented approach targets a class of attacks,
which result in an abnormally altered frequency of transmitted
messages, where the attacker has no information about the
impacted message arrival curves.

Due to its specific attack detection principle, this framework
can improve automotive safety and reliability. For instance, it
can be combined with the message-based fault diagnosis into
a unified safety and security framework [20]. Nevertheless,
because of the realistic threats arising from a malicious ma-
nipulation of traffic patterns (e.g., illustrated in Section I or
in [4]) as well as its non-intrusive and lightweight detection
principle the proposed approach is legitimate as an additional
security solution orthogonal to other methods.

B. Real-Time Attack Detection

Figure 2, shows that the component-level part of the se-
curity framework detects compromised message streams. The
detection method is explained by means of a common attack,
namely the manipulation of the communication behavior.
Figure 6 illustrates such an attack scenario, with the shaded
area marking the compromised region and Rm̃(t) representing
the message count from one possible stream violating the
upper bound. This stream equates to the event trace function
in Figure 3 depicted by the short red arrows. Based on the
arrival curve definition in Equations (3a) and (3b), we can
formulate a condition for the transgression of the upper bound,
caused by an increased occurrence of message events. The
attack requirement is defined in Equation (5).
∃t ∈ R+ :

αum(∆) < max
t≥0
{Rm(t+ ∆)−Rm(t)} (5)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2666605

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

0

1

2

3

4

5

6

7

8

∆

|m|

ta

R
m̃

(ta)

tb

R
m̃

(tb)

to

αu
m(∆)

αl
m(∆)

R
m̃

(t)

Fig. 6: Example for an attack on a single message stream by
manipulating its transmission period. The corrupted message stream
m̃ (dashed red curve) violates the upper arrival curve αu

m for the first
time at to.

Rm(t) is a message stream in normal runtime in contrast
to an arrival curve, which resides in a time interval domain.
For example, while Rm(t) depicts messages with decreasing
periods between them, this is not allowed in an arrival curve.
Consequently, one cannot compare both curves directly for a
limited number of message arrivals. To guarantee the detection
of the earliest upper bound violation, it is necessary to contin-
uously monitor the inter-arrival times of the message events.
The algorithm for the detection of arrival curve violations is
explained in detail in Section IV-A.

C. Redundancy-Aware Distribution of Attack Monitors

Due to the decentralized nature of our approach, different
attacks may be detected by different monitors with varying, yet
timely, detection times. It might not be necessary to consider
all observable and potentially manipulated message streams
on each monitor but only a subset of them, clearly reducing
the implementation and computation effort. A design-time
determination of monitors can help the designer to chose
suitable monitors and configurations for particular message
stream observations. In addition to the elimination of a single
point of failure and the reduction of the computation effort,
different redundancy levels can be used by using multiple
monitors for each message stream.

For automatically distributing detection tasks, the system
designer can configure two parameters: redundancy level λm
for critical message streams as well as tolerance limits θr
for the monitoring resources. Increasing λm improves the
reliability of the attack detection and adjusting θr balances
the distribution of monitors. Consider the architecture in
Figure 7 with three ECUs, two buses and a gateway. Our
detection method monitors the message streams m1, m2 and
m3 transmitted on bus1 and bus2. A compromised message
stream can be detected by its associated detection tasks. For
instance, task tm1

can detect a manipulation of message stream
m1, task tm2 a manipulation of message stream m2, and so on.
The left side of the figure shows a scenario with a redundancy
level λm = 2. The tasks are not evenly distributed and there
exist two detection tasks per message stream. By contrast,
the optimized scenario on the right has a redundancy level of
λm = 3. The system uses three detection tasks per message
stream all of which are evenly distributed and, hence, use the

unbalanced distribution
(redundancy level λm=2)

balanced distribution
(redundancy level λm=3)

r 1
(E

C
U

)

ga
te

w
ay

r 2
(E

C
U

)

r 3
(E

C
U

)

bus1

bus2

m1 m2 m3

m1 m2 m3

tm1

tm3
tm3

tm1
tm2

tm2

r 1
(E

C
U

)

ga
te

w
ay

r 2
(E

C
U

)

r 3
(E

C
U

)

bus1

bus2

m1 m2 m3

m1 m2 m3

tm1

tm2 tm3

tm2

tm3 tm1

tm1
tm2

tm3

Fig. 7: Example for different distributions of detection tasks. The left-
hand side architecture uses two tasks per message stream which are
unevenly distributed yielding a redundancy of λm = 2. In the right-
hand side architecture the tasks are evenly balanced with a higher
redundancy level of λm = 3.

resources more equitably. The distribution process is formally
described in Section IV-B.

IV. METHODOLOGY

We consider two important metrics for the attack detection
method, namely timeliness and coverage. Timeliness guaran-
tees a minimal detection time which is essential in safety-
critical real-time systems. Coverage ensures that all detectable
attacks are correctly and reliably detected. This section pro-
vides the formal descriptions of the real-time attack detection
and the distribution of attack detection tasks.

In the following, m̃ is used to denote the manipulated
version of the message stream m and is accordingly described
by the period pm̃ and a worst-case jitter jm̃.

A. Real-Time Attack Detection
Since a timely detection of an attack is crucial in a safety-

critical system, an obvious approach is to test for arrival curve
violations of message streams immediately after the arrivals
of the corresponding messages. At the monitoring resource,
an event trace function µm(n) provides timestamps tn−1 for
message instances of the stream m (see Equation (1)).

The correct and timely detection requires the continuous
monitoring of message inter-arrival times. Consequently, in
the example in Figure 6 checking the violation for each
message arrival separately could not detect an attack before
the first arrival after time ta. By contrast, considering at least
two consecutive message arrivals would allow to detect the
violation at time to. Clearly, a sufficient observation time is
important when considering a bursty behavior of the message
stream with the upper arrival curve steeply ascending in the
beginning before swinging into a periodic run. At the same
time, checking for an attack only after detecting a particular
number of message violations is not a good strategy, since a
message count can fall below αu before exceeding it again,
as demonstrated in Figure 6 around time ta. It is important to
consider the history of a monitored message stream, i.e., the
arrival times of the previous messages.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2666605

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

Algorithm 1 Detection of compromised message streams by
a resource r
Require:

⋃
m,s(δm,s, νm,s) . tuples describing the arrival curves αum for

all message streams m monitored by resource r

1: for s ∈ {1, .., n},m ∈Mr do . initialize timers and counters

2: TIMERm,s ← δm,s
3: COUNTERm,s ← νm,s
4: end for
5: for m ∈Mr do . analyze monitored message streams

6: if received(m) = TRUE then . message from m arrived

7: for s ∈ {1, .., n} do
8: if COUNTERm,s = νm,s then . first message in δm,s

9: TIMERm,s ← δm,s
10: end if
11: COUNTERm,s ← COUNTERm,s − 1 . reduce

message counter

12: if (COUNTERm,s < 0) then
13: attacked(m) . report attack on m

14: end if
15: end for
16: end if
17: for s ∈ {1, .., n} do . adapt message counters after timeout

18: if timeout(TIMERm,s) = TRUE then
19: COUNTERm,s ← min(COUNTERm,s + 1, νm,s)
20: TIMERm,s ← δm,s
21: end if
22: end for
23: end for

Leaky-bucket detection algorithm. Considering the issues
discussed above, for the proposed attack detection we adopt
the leaky bucket approach used to validate the runtime confor-
mity of event arrivals in the context of network calculus [21].
The method is lightweight and can be efficiently implemented,
which makes it ideal for hard real-time systems. The basic
idea is to monitor the numbers of message arrivals in all time
intervals that define an upper arrival curve.

Algorithm 1 illustrates the detection procedure by resource r
monitoring message streams m ∈Mr with given upper arrival
curves αum(∆) using the following parameters.

pm nominal period of a message stream m
jm worst case jitter in pm
δm,s minimum time interval between consecutive

messages in a staircase function s
νm,s maximum number of messages within interval

length zero (burst capacity)
ρm,s message counter decrement

The algorithm is based on the event stream regulation
from [22] and assumes that each arrival curve can be ap-
proximated by a minimum on a set of periodic staircase
functions [23]. An arrival curve with distinct step widths can
be represented by n tuples (δm,s, νm,s), s ∈ {1, .., n}, which
are in ascending order with respect to νm,s.

The initialization steps (lines 2–4) allocate time inter-
vals δm,s and the corresponding initial message numbers
at time zero νm,s to timers (TIMERm,s) and message coun-
ters (COUNTERm,s), respectively, for each considered stair-

case function s and message stream m. For this reason,
COUNTERm,s represents the capacity. During the detection pro-
cess (lines 5–23), the algorithm checks for arriving messages
(line 6) and expired timers (line 18) of each message stream
m. Upon arrival of a message, it is then tested if each counter
is still full and, thus, if m was the first message within the
time interval δm,s (line 8), in which case the corresponding
timer will be restarted (line 9). The latter step guarantees
that a potential violation of the upper arrival curve will be
detected and can be visualized by aligning the beginning of
the arrival curve to the first message of the count Rm as
depicted, for instance, in Figure 6. Subsequently, the counters
are decremented and an arrival curve violation on the message
stream m is reported if any of them falls below zero (lines
11–14). After each expiration of TIMERm,s, the COUNTERm,s
values are adapted and the timers are reset to the appropriate
time intervals (lines 17–22).

Correctness of Algorithm 1 can be derived from the formal
proofs in [22].

Since the algorithm iterates over both message streams
and distinct staircase functions, it has O(n2) complexity.
However, its efficiency can be improved by leveraging the
periodicity of the message-based communication in automo-
tive networks, where the boundaries of message streams can
often be described by arrival curves composed of a nominal
period p and a worst case jitter j. Based on the derivations for
horizontally shifted staircase functions [23], we can adapt the
algorithm for a periodic message stream with jitter, as has been
defined in Equation (4). It needs one tuple as input including
an additional parameter ρ describing the message counter
decrement. The three parameters are defined in Equation (6),
with gcd(x1, x2) returning the greatest common divisor of x1

and x2.
δm = gcd(pm, pm−jm)

νm = 2·ρm−
pm−jm
δm

ρm =
pm
δm

(6)

After initializing the TIMERm with δm and the COUNTERm with
νm, only line 11 has to be modified to decrement the counter
by ρm rather than by 1 (COUNTERm ← COUNTERm − ρm).
The modified algorithm requires only one timer variable per
monitored message stream (i.e., s ∈ {1}) resulting in a
reduced complexity. The algorithm scales linearly and can be
efficiently implemented with a reduced memory and runtime
overhead.

To illustrate the procedure, consider the communication
example in Figure 1, where a message stream m with period
pm = 30 ms and jitter jm = 15 ms is attacked and altered
to yield a compromised message stream m̃ with pm̃ = 20 ms
and no jitter. Applying the given period and jitter to Equa-
tion (6) leads to the parameters for the detection algorithm
δm = 15 ms, νm = 3 and ρm = 2. This means that TIMERm
is loaded with 15 and COUNTERm with 3 and decremented
by 2 each time a message arrives. When neglecting the actual
computation times and assuming that the first message of m̃ is
detected instantly after the algorithm starts, then the detection
time (i.e., the time until the method attacked(m) is reached)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2666605

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

is 40 ms. The fast execution ensures that an attack is detected
early in order to initiate recovery counter measures.

B. Redundancy-Aware Distribution of Attack Monitors

The proposed security approach is designed for a decen-
tralized implementation where the attack detection algorithm
simultaneously monitors multiple message streams on different
resources. On the one hand, this approach guarantees con-
tinuous detection in case of a system fault or attack that
disables one or more resources. On the other hand, it allows the
system designer to evenly distribute the computation amongst
the resources, increasing the overall reliability and security.
The decentralized detection covers the entire architecture,
including remote parts of the system, such as different sub-
networks. Moreover, in order to improve the security of
safety-critical messages, redundant detection tasks are run on
different resources to monitor considered message streams.
An essential requirement is that each message transmitting
resource, such as an automotive bus, should be connected to at
least one computation resource (e.g., ECU, gateway), enabling
monitoring of the message streams.

We use the graph-based specification of the system architec-
ture. As described in Section II-C, the graph GR = (R,ER)
connects resources r ∈ R (e.g., ECU and buses) through
architectural links l ∈ ER where the latter are defined as
resource pairs (ri, rj). Sets Rbus and Recu contain the bus and
the computational resources, respectively. A binary function
detect(r) indicates if a resource r supports attack detection
tasks (detect(r) = 1) or not (detect(r) = 0)4. The system-
level coverage of attack detection is defined in Equation (7).
∀m ∈M :

∃r ∈Recu,∃rb ∈ Rbus :∑
detect(r) ∧ (r, rb) ∈ ER ∧ (m, rb) ∈ EM > 0

(7)

According to the equation, for each message stream m there
exists at least one resource that monitors it for attacks and con-
tains an architectural link l ∈ ER to the bus resource rb serving
the message stream m. This is the minimal requirement for
the system to detect all message stream manipulations.

The decentralized attack detection approach reinforces reli-
ability as well. This is achieved by redundant monitoring of
each message stream and exploiting the fact that bus-attached
resources can monitor messages which are not destined for
them. Our approach seeks to evenly distribute the computation
effort across the monitoring resources while maintaining a
predetermined redundancy level λm for each message stream.
This is formulated as an Integer Linear Program (ILP). The
ILP and its corresponding parameters are defined below.

Mr ⊆M subset of message streams which are observable
by a resource r ∈ R

λm ∈ N redundancy level, defines the number of moni-
toring resources for a message stream m

λr ∈ R average redundancy level on a resource r ∈ R

4Reasons for a resource being incapable of detection can range from in-
sufficient computational performance to the lack of fundamental architectural
capabilities, e.g., in case of a bus resource.

θlr, θ
u
r ∈ R tolerance limits, define the lower and upper

limit for the monitoring messages around the
system average θlr ≤

|M |∑
∀r∈R detect(r) ≤ θ

u
r

or,m∈{0, 1} observation switch, determines if a message
stream m observable by resource r will be
monitored (1) or not (0) at runtime

xr ∈ N monitoring variable, determines the number of
monitored message streams on resource r ∈ R

yr∈{0, 1} range switch, determines if the monitoring
variable xr resides in the desired range

maximize
yr∈{0,1}

∑
∀r∈R

yr (8a)

subject to:

∀m ∈M :
∑
∀r∈R
∧m∈Mr

(detect(r) ∧ or,m) = λm (8b)

∀r ∈ R :
∑
∀m∈Mr

(detect(r) ∧ or,m) = xr (8c)

∀r ∈ R : xr ≤ |Mr| (8d)

∀r ∈ R : xr ≤ θur · λr · yr + |Mr| · (1− yr) (8e)

∀r ∈ R : xr ≥ θlr · λr · yr (8f)

Constraint (8b) uses the redundancy level λm to determine
the number of resources that monitor the message stream m.
For instance, for a redundancy level λm = 1 each message
stream is monitored by one resource. Constraint (8c) uses a
monitoring variable xr to determine the number of message
streams on each resource r which are simultaneously mon-
itored. detect(r) indicates the attack detection capability of
the resource r. As shown in Constraint (8d), the monitoring
variable is bounded from above by the cardinality of Mr,
namely the set of all streams observable by r. Constraints (8e)
and (8f) define the range for the monitoring variable and,
thus, the number of detection tasks on each resource. The
tolerance limits θ

u/l
r determine how much the number of

monitors can deviate from the system-wide average, where
the latter is calculated as the ratio of all monitored message
streams to all monitoring resources. Since Constraints (8e)
and (8f) must consider redundancy levels greater than one,
the tolerance limits are multiplied by the average redundancy
level λr, the arithmetic mean of the redundancy levels of all
message streams monitored by one resource. The tolerance
limits θu/lr and the values of λr are precomputed. The range
switch yr decides if the number of monitored streams is within
the predefined range (yr = 1) or not (yr = 0). The objective
is to maximize the sum of range switches over all resources
and it should yield a balanced monitoring of message streams
(Equation (8a)).

V. EXPERIMENTAL RESULTS

In this paper, we are interested in investigating the feasibility
and efficiency of our attack detection method. As a convincing

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2666605

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

proof of this concept, after a brief description of the test
environment, we use a test case evaluation to demonstrate both
the timely detection of manipulated message streams and the
automated distribution of detection tasks. A runtime analysis
shows the efficiency and scalability of our framework. Finally,
a case study illustrates our approach in more detail on a large
E/E architecture with more than 100 ECUs.

A. Test Environment
460 synthetic test cases were generated, analyzed and eval-

uated. Each test case contains the graph-based description for
one specification including the E/E system architecture, the ap-
plications and the mappings between them. In an architecture
graph the vertices represent E/E hardware, such as ECUs and
gateways, while the edges represent the communication-links.
In an application graph, vertices represent tasks and messages
and edges represent dependencies between them. Although
the test cases are synthetic, their topologies, the numbers
and distribution of tasks and messages as well as the timing
parameters reflect real automotive E/E architectures. Some of
their parameters together with their minimum and maximum
values are listed in Table I. The test cases encompass E/E
architectures of high-end vehicles with over 100 ECUs.

All experiments were carried out on an Intel Core i7 with
3.4 GHz and 16 GB RAM. The system specifications were
generated with the help of OPENDSE [24], a Java-based
design space exploration framework for embedded systems,
and all ILP-based optimizations used GUROBI version 6.0
as solver [25]. The parameters above describe the hardware of
our simulation environment used to evaluate and validate our
work. They do not represent real automotive hardware which
is usually significantly slower. A discussion on the expectable
computational and memory overhead of real automotive hard-
ware can be found in Section V-D.

B. Evaluation
All test cases are evaluated with respect to the time to

detection, the efficiency and coverage of the detection task
distribution as well as the corresponding computation times.
Timeliness. Figure 8 illustrates the message periods and time
to detection averaged over all message streams in each test
case. The graph depicts the predefined nominal periods (cross
marks), the attack periods (i.e., increased message rates) (ring
marks) and the times to detection (solid curve), respectively.
For each message stream, the attack period has been randomly
generated in the range 5 – 90% of the nominal period. Due to
the normal distribution of the random variable, the associated
average values of the attack periods are located roughly at 50%
of the nominal period curve and show a similar trend in the
graph. The test cases are sorted by increasing average times to

TABLE I: Reference values of parameters for 460 test cases.

ECUs Buses GWs Tasks Message
streams

Nominal
period

[ms]

Attack
period

[period ratio]

MIN 2 1 0 6 3 5 5%
MAX 117 4 1 366 438 100 90%

40 80 120 160 200 240 280 320 360 400 440
0

10

20

30

40

50

60

70

Test case id (sorted)

A
vg

.t
im

es
pe

r
te

st
ca

se
[m

s]

nominal period attack period
time to detection

Fig. 8: The graph shows the average nominal periods () and attack
periods () of the message streams. The solid curve illustrates the
average times to detection of a potential attack. The results for the
test cases are ordered by increasing average times to detection.

detection. The graph indicates a dependency between the time
to detection and both the nominal message stream periods and
the attack periods. On average, the times to detection are in
the range of twice the attack periods which is in accordance
with the detection algorithm. In this case, due to the normal
distribution of the randomly generated attack periods, the blue
line lies roughly in the range of the nominal periods and above
their average for higher test case ids.

The overall outcome in Figure 8 indicates that a real-time
detection of manipulated message streams using the introduced
method is feasible. The illustrated times to detection represent
the time intervals necessary to detect an attack. Since these
results are simulated and do not consider potential computa-
tional overhead, it is important to test the efficiency of the
security approach on real automotive hardware in future.
Coverage. Figure 9 shows three graphs depicting the average
amount of monitored message streams per resource for each
test case (thick blue curve). Coverage is calculated according
to the ILP defined in Section IV-B. The vertical bars around
this curve represent the appropriate standard deviation from
the average values and, hence, are an indicator for how evenly
the monitored messages are distributed among the monitoring
resources. Lower standard deviations, i.e. shorter vertical bars,
correspond to a more even distribution and vice versa. The
aim of this graph is to visualize the variation of detection
task numbers in relation to all other test cases as well as the
three tolerance levels. The specific amounts of detection tasks
are depicted more clearly for the case study in Section V-C.
A second plot (thin green curve) in each graph shows the
percentage of the results with a correct adherence to the
predefined monitoring range (i.e., cases where yr = 1). To
evaluate the effect of the tolerance limits θr, the curves are
depicted for three desired ranges around the average message
per resource number, namely ±5% (top), ±20% (center), and
±50% (bottom).

When comparing the compliance curve with the message
stream number curve, a lower percentage of hits for the moni-
toring range is met by a higher standard deviation. This correct

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2666605

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

0
1.5
3.0
4.5
6.0
7.5
9.0

10.5
12.0

∆
θ
r

=
±

5
%

0%

25%

50%

75%

100%

0
1.5
3.0
4.5
6.0
7.5
9.0

10.5
12.0

∆
θ
r

=
±

2
0
%

0%

25%

50%

75%

100%

REDUCED ”NOISE” (VARIATION FROM

AVERAGE TASK NUMBERS) IS BETTER

40 80 120 160 200 240 280 320 360 400 440
0

1.5
3.0
4.5
6.0
7.5
9.0

10.5
12.0

Test case id (sorted)

∆
θ
r

=
±

5
0
%

Average numbers of detection tasks per resource (left scale)

0%

25%

50%

75%

100%

Compliance with the predefined range (right scale)

Fig. 9: The three graphs show the average number of monitored
message streams per resource together with their standard deviation
for each test case (thin vertical lines). A second curve indicates the
compliance with the predefined monitoring range (right-hand side y-
axis). The curves are plotted for three different tolerance values. The
results are shown for a redundancy level λm = 2.

and presumed correlation verifies the ILP formulation and
allows us to estimate an appropriate tolerance level. Obviously,
while a small θr in many cases prevents the solver from finding
an optimal solution (compare upper graph), a large value
results in an overall high standard deviation (compare lower
graph). From the three selected ranges, the middle one (±20%)
seems to lead to the smallest standard deviation among all
test cases and, hence, to the most balanced distribution of
the monitored message streams among all resources. Although
for particular architectures the lowest tested tolerance level
can indeed lead to an optimal detection task distribution (e.g.,
test cases around 110 and 250), a level of ±20% provides
satisfying results for a broad range of system specifications
and could be used by the system designer as a starting point
for a fine-grained adjustment. Considering the number of
redundantly monitored message streams, all results in Figure 9
are calculated for a redundancy level λm = 2. A lower
(λm = 1) and a higher (λm = 3) level have been investigated
as well, and in both cases the overall tendency discussed above
remains similar.
Runtime. Regarding the timing behavior, a short time to
detection is important for the security approach and has been
discussed by means of Figure 8. Within our security frame-
work, both the algorithm-based attack detection simulation
and the ILP-based distribution of detection tasks are per-
formed at design-time, and, hence, do not impact the runtime.

2 4 8 16 32 64 128
100

101

102

103

104

105

System size [ECUs]

R
un

tim
e

[m
s]

(measured) (trend)
(measured) (trend)

Attack detection simulation
Detection task distribution

Fig. 10: Performance of the framework for different system sizes. The
graph illustrates the computation times for the ILP-based distribution
of attack detection tasks (including different test case configurations)
() and the attack detection simulation (). Additionally, two trend
curves indicate a polynomial computational complexity.

Nevertheless, like most processes in the automotive industry,
system-design is cost-sensitive and, thus, low computation
times are beneficial. To investigate this, a runtime analysis has
been performed and its results are shown in Figure 10. Here,
the computation times of the simulation and distribution are
regarded separately and plotted as a function of the system size
depicted by the number of ECUs in the E/E architecture. Each
measured point represents the runtime for one test case with a
particular parameter configuration where the largest analyzed
architecture is composed of 117 ECUs. In order to better vi-
sualize the distribution and behavior of the different runtimes,
two dashed curves illustrate trends for both the simulation
and the distribution, respectively5. The calculated trends are
polynomial curves indicating a quadratic and cubic complexity
in the number of ECUs for the simulation and distribution,
respectively, when moving towards advanced architectures. At
the same time, in general, the duration of the computation
does not exceed 100 seconds even for the largest analyzed
architectures. The longest simulation takes 83.1 seconds and
the longest distribution 30.7 seconds. Considering that today’s
modern automotive networks consist of a lower three-digit
number of ECUs, the results illustrate practical computation
times of our security framework and indicate a good scalability
for larger architectures in the future.

Note, that both axes in Figure 10 are in logarithmic scale
and the numbers of test cases for different system sizes may
vary, causing noticeable changes in the distribution of the
single measurement points.

C. Case Study
An automotive case study shall illustrate the functionality of

the proposed distributed attack detection in detail. The study is
based on a state-of-the art automotive E/E architecture which
consists of 144 ECUs6, five buses and one automotive gateway.
The system uses 618 tasks which communicate via 321
messages with message periods ranging from 5 to 100 ms and

5The approximation has been determined by the method of least squares.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2666605

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

message jitters determined according to the delay calculation
for event-triggered systems proposed in [26].

The results are shown in Figure 11 where for each of
the four graphs, monitoring resources are depicted on the
x-axis and the number of monitored message streams per
resource on the y-axis. The bars in each graph stand for a
different tolerance level, namely 5% (top graph) 10% (second
graph), 20% (third graph), and 50% (bottom graph). The two
shades represent redundancy levels, λm = 3 (plain bars), and
λm = 1 (striped bars), for which each message stream is
monitored by three resources and one resource, respectively.
An increased height of the plain bars indicates a higher number
of detection tasks for the higher redundancy level. Here, the
semi-transparent black curves lain on top of the bars shall help
visualize the variations in the number of detection tasks for
different resources.

For the two middle graphs with tolerance levels of 10%
and 20%, the detection tasks for the different redundancy
levels are evenly distributed among the monitoring resources,
with approximately 7 and 3 tasks per resource for λm = 3
and λm = 1, respectively. However, for λm = 1, the second
graph shows a slightly larger variance leaving a tolerance
level of 20% as the most optimal option. By contrast, the
graphs illustrating a tolerance level of 5% and 50% show much
larger irregularities with up to 14 tasks difference between the
resources. This study illustrates how a proper adjustment of
the optimization parameters during the system design can help
to evenly allocate the detection tasks to monitoring resources.

D. Overhead on Automotive ECUs

The results are based on the analysis and simulation of
synthetic test cases as well as a synthetic case study which,
as mentioned before, are based on current and future auto-
motive (E/E) architectures with realistic system topologies
and application parameters. The experiments were performed
on laboratory hardware which provides a better performance
than today’s automotive ECUs. This is not an issue for the
distribution of detection tasks since it would be done at design-
time on fast computers. However, regarding the performance
of the attack detection on real automotive hardware, we are
not able to provide real measurements results at this time.

In the following we want to give an estimation of the
computational overhead caused by the implementation of
the attack detection on real automotive hardware. For this,
we orient ourselves on the implementation results from
a previous work addressing the distributed diagnosis of
permanent faults in automotive networks [20]. Although
the fault diagnosis algorithm is different in its objective
and approach, it is comparable regarding its length and
complexity as well as the way it deals with multiple message
streams. Relating to the fault diagnosis results, the proposed
attack detection approach, monitoring 15 message streams per
resource, would utilize about 5% of the processor resources
and less than 10 KB of memory. Keeping the overhead low
will facilitate the implementation of the attack detection.
Moreover, the predominantly periodic communication in

6As of the 144 resources 24 have no monitoring capability. For clarity
only the results for the remaining 120 resources are depicted in Figure 11.

2

4

6

8

10

12

14

16

M
on

ito
re

d
st

re
am

s
(
∆
θ
r

=
±

5
%

)

λm=3

λm=1

2

4

6

8

10

12

14

16

D
et

ec
tio

n
ta

sk
s

(
∆
θ
r

=
±

1
0
%

)

2

4

6

8

10

12

14

16

D
et

ec
tio

n
ta

sk
s

(
∆
θ
r

=
±

2
0
%

)

10 20 30 40 50 60 70 80 90 100 110 120

2

4

6

8

10

12

14

16

Monitoring resource id

D
et

ec
tio

n
ta

sk
s

(
∆
θ
r

=
±

5
0
%

)

Fig. 11: The four graphs show the number of monitored message
streams allocated to different resources for an exemplary automotive
E/E architecture with 144 ECUs. The distribution is most balanced
for the tolerance levels ±10% and ±20%, as depicted in the two
middle graphs. It varies largely for ±5% and ±50%.

automotive networks enables us to efficiently store the arrival
curves data. As discussed in Section IV-A, using the periodic
with jitter model the detection requires only three parameters
per arrival curve.

The evaluation of our approach presented here indicates
a good compliance with the NHTSA guidelines [7]. On the
one hand, the timely attack detection accords with the rapid
detection and remediation capabilities that the automotive
industry should establish in order to mitigate the safety risk
to vehicle occupants and surrounding road users. On the other
hand, the coverage of the entire E/E architecture and the
application of redundant message stream monitoring would
ensure that vehicle systems can take appropriate and safe
actions, even when an attack is successful.

VI. RELATED WORK

This section contains a comprehensive overview and discus-
sion of the existing work in the area of automotive security,
where the focus is on the detection of attacks on in-vehicle
networks.

The automotive industry is more than ever driven by the
technological progress, notably in terms of connectivity and
communication. The security risks arising from this devel-
opment are evident, and beyond the stage of mere thought

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2666605

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

experiments or lab setups, as pointed out in [27]. An in-
troductory insight and discussion of automotive security is
presented in [3]. On the one hand, it illustrates the threats
and the challenges arising from the growing complexity of
automotive electronics and its interconnections to the outside
world. On the other hand, it proposes potential concepts
for future solutions comprising Ethernet-based networks and
formal verification approaches. The related threats can range
from a relatively harmless unauthorized access to the vehicle
by cracking the key-less entry system [28] to the much more
severe intrusion into an in-vehicle network and infiltration
of its ECUs. This can interrupt safety-critical systems and
endanger the lives of the traffic participants [1, 11, 2]. Us-
ing the example of an Electronic Throttle Control (ETC),
[5] highlights the relevance and danger arising from a DoS
attack. After having hacked the engine management ECU, the
attacker can use malicious code to flood the CAN bus with
a large number of spoofed messages and provoke a DoS on
the ETC unit, thereby causing an uncontrolled acceleration.
Multiple approaches examine automotive security including
inter-vehicular networks, Vehicle-to-Vehicle and Vehicle-to-
Infrastructure communication [30, 31]. [32] analyzes the per-
formance of vehicular communication systems, where the car
is a node in a network. [33] investigates IPv6-based protocol
to secure a mobile vehicular communication and demonstrate
that this is possible without serious network overload.

A general cybersecurity guidance has been recently pro-
posed by the NHTSA [7]. It focuses on solutions to harden
the automotive E/E architecture against potential attacks and
ensures that safe actions are taken in case of successful attacks.
A systematic and ongoing process to evaluate risks should be
followed through the entire life-cycle of the vehicle including
design, manufacture, maintenance and decommissioning. The
proposed best practices advice the automotive industry to use
a layered approach to vehicle cybersecurity which should be
built upon risk-based prioritized identification and protection
of safety-critical systems. Notably, the guidance advocates a
timely attack detection followed by a rapid response to poten-
tial vehicle cybersecurity incidents and recovery from these
incidents when they occur. The distributed traffic monitoring
proposed in this paper complies with these practices.

Overall, cyber-attacks on automotive systems are a practical
threat that must be considered both during the design of E/E
architectures and during the operation time of the vehicle.

Several papers address automotive security at design-time.
[34] integrates security into the traditional Design Space
Exploration (DSE) of distributed embedded systems. In [35]
the security in the DSE process is addressed but focuses
on the mapping of functional models to CAN-based plat-
forms which are additionally applying Message Authentication
Codes (MACs). To improve the efficiency and define the
realistic security scenarios, the work in [36] extends [35]
by redefining the Mixed Integer Linear Programming (MILP)
formulations to consider functional paths. The application of
MACs for the Flex-Ray bus is presented in [37]. Verification of
security requirements of automotive architectures is proposed
in [19]. The approach uses security-specific parameters such
as exploitability and patching rate to describe the system
and determine a Markov model which is then subjected to

a probabilistic model checking. Our security approach covers
two tasks at design-time. First, a system analysis extracts the
necessary parameters for the runtime detection and second, an
optimal distribution of the detection tasks among the system
resources is performed. Our work follows a rather different
approach from the papers above, mainly because it uses the
unaltered system specification for the attack detection process
(i.e., without initial security extensions).

Together with its consideration during automotive system-
design, security has been also addressed in the context of
runtime attack detection. A general detection scheme for
attacks on in-vehicle networks is proposed in [38], using a
set of eight criteria for the identification of a typical behavior
of automotive bus systems, such as CAN. The work presents
an Intrusion Detection System (IDS) for future vehicles called
Anomaly Detection Sensors, that inspects the communication
in terms of formality, location, range, frequency, correla-
tion, protocol, plausibility and consistency. [4] and [38] have
proposed anomaly detection using an information-theoretic
method. There, using an entropy-based increased frequency
detection at runtime is related to our approach. However, the
evaluation merely proves the concept and does not provide
the observation times needed for the detection. Thus, a direct
comparison with our method in terms of real-time efficiency
is not possible. Beyond the automotive domain, the impor-
tance of a distributed IDS, which removes the single point
of failure, has been discussed in [39]. The differentiation
between normal and manipulated traffic is based on a feature
extraction performed during a parametrization and training
phase on each node using the Naı̈ve Bayes Classifier and the
agreement between the nodes is determined using an average
consensus protocol. In contrast to this probabilistic method,
our approach takes advantage of the fact that automotive
system and communication properties are known at design-
time, enabling a verification if the observed traffic behavior
conforms to the given specification.

VII. CONCLUDING REMARKS

The overall goal of this work lies in improving the security
of safety-critical distributed systems, such as automotive E/E
architectures, in a decentralized and implicit manner by en-
hancing the reliability of the attack detection and reducing the
implementation costs at design time. Motivated by a realistic
attack scenario on an electric vehicle, we demonstrated the
importance of timely, distributed and reliable detection which
can be provided by our framework. The decentralized nature
of the approach allows the detection algorithm to be efficiently
implemented in existing E/E system architectures without the
risk of a single point of failure, hence, increasing the overall
reliability. We demonstrated the feasibility and efficiency of
our approach on a number of test-cases including 460 syn-
thetically generated system specifications with sizes up to 117
ECUs. Additionally, a case study with 144 ECUs provided a
detailed investigation of the security framework including a
realistic estimation of the computational overhead which lies
below 5%.

As part of future work, we want to extend the optimization-
based detection task distribution by allowing the designer
to specify constraints, such as different criticality levels or

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2666605

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

specific vulnerable system resources. Furthermore, we want
to consider other security threats which might result in an
alteration of the traffic patterns, such as the removal or
overwriting of lower priority messages or the manipulation of
the message content causing a potential delay of the sending
instance.

REFERENCES
[1] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive CAN networks–

practical examples and selected short-term countermeasures,” in Computer Safety,
Reliability, and Security, pp. 235–248, Springer, 2008.

[2] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,
K. Koscher, A. Czeskis, F. Roesner, T. Kohno, et al., “Comprehensive experimental
analyses of automotive attack surfaces,” in Proceedings of the USENIX Security
Symposium, 2011.

[3] F. Sagstetter, M. Lukasiewycz, S. Steinhorst, M. Wolf, A. Bouard, W. R. Harris,
S. Jha, T. Peyrin, A. Poschmann, and S. Chakraborty, “Security challenges in au-
tomotive hardware/software architecture design,” in Proceedings of the Conference
on Design, Automation and Test in Europe (DATE), pp. 458–463, 2013.

[4] M. Müter and N. Asaj, “Entropy-based anomaly detection for in-vehicle networks,”
in Proceedings of the Intelligent Vehicles Symposium (IV), pp. 1110–1115, 2011.

[5] T. Hoppe, S. Kiltz, A. Lang, and J. Dittmann, “Exemplary automotive attack
scenarios: Trojan horses for electronic throttle control system (ETC) and replay
attacks on the power window system,” in In Automotive Security - VDI-Berichte
Nr. 2016, Proceedings of the VDI/VW Gemeinschaftstagung Automotive Security,
pp. 165–183, 2007.

[6] T. Hoppe and J. Dittman, “Sniffing/replay attacks on CAN buses: A simulated
attack on the electric window lift classified using an adapted cert taxonomy,” in
Proceedings of the 2nd workshop on embedded systems security (WESS), pp. 1–6,
2007.

[7] N. H. T. S. Administration, “Cybersecurity best practices for modern vehicles.”
[Online]: available at http://www.nhtsa.gov/About-NHTSA/Press-Releases, 2016.

[8] S. Chakraborty, M. A. A. Faruque, W. Chang, D. Goswami, M. Wolf, and Q. Zhu,
“Automotive cyber-physical systems: A tutorial introduction,” IEEE Design & Test,
vol. 33, no. 4, pp. 92–108, 2016.

[9] Nissan Motor Company Ltd., “Nissan LEAF owner’s manual - section LAN
systems.” [Online]: available at https://carmanuals2.com/brand/nissan/leaf-2014-
374, 2013.

[10] R. Roderick, “A look inside battery-management systems.” [Online]: available at
http://electronicdesign.com/power/look-inside-battery-management-systems, 2015.

[11] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham, et al., “Experimental security analysis of
a modern automobile,” in Proceedings of the IEEE Symposium on Security and
Privacy (SP), pp. 447–462, 2010.

[12] U. Klehmet, T. Herpel, K.-S. Hielscher, and R. German, “Delay bounds for CAN
communication in automotive applications,” in Proceedings of the Conference on
Measuring, Modelling and Evaluation of Computer and Communication Systems
(MMB), pp. 1–15, 2008.

[13] S. Chakraborty, S. Kunzli, and L. Thiele, “A general framework for analysing
system properties in platform-based embedded system designs,” in Proceedings of
the Conference on Design, Automation and Test in Europe (DATE), pp. 190–195,
2003.

[14] S. Kuenzli and L. Thiele, “Generating event traces based on arrival curves,”
in Proceedings of the Conference on Measuring, Modelling and Evaluation of
Computer and Communication Systems (MMB), pp. 1–18, 2006.

[15] S. Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari, “Scheduling periodic task
systems to minimize output jitter,” in Proceedings of the International Conference
on Real-Time Computing Systems and Applications (RTCSA), pp. 62–69, 1999.

[16] T. Nolte, H. Hansson, and C. Norstrom, “Minimizing CAN response-time jitter
by message manipulation,” in Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 197–206, 2002.

[17] U. Suppiger, S. Perathoner, K. Lampka, and L. Thiele, “A simple approximation
method for reducing the complexity of modular performance analysis,” Tech. Rep.
329, ETH Zurich, 2010.

[18] A. Albert, “Comparison of event-triggered and time-triggered concepts with regard
to distributed control systems,” in Proceedings of the Embedded World Conference,
pp. 235–252, 2004.

[19] P. Mundhenk, S. Steinhorst, M. Lukasiewycz, S. A. Fahmy, and S. Chakraborty,
“Security analysis of automotive architectures using probabilistic model checking,”
in Proceedings of the Design Automation Conference (DAC), pp. 38:1–38:6, 2015.

[20] P. Waszecki, M. Lukasiewycz, and S. Chakraborty, “Decentralized diagnosis of
permanent faults in automotive E/E architectures,” in Proceedings of the Interna-
tional Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS 2015), pp. 189–196, 2015.

[21] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of deterministic queuing
systems for the internet, vol. 2050. Springer Science & Business Media, 2001.

[22] K. Huang, G. Chen, C. Buckl, and A. Knoll, “Conforming the runtime inputs
for hard real-time embedded systems,” in Proceedings of the Design Automation
Conference (DAC), pp. 430–436, 2012.

[23] K. Lampka, S. Perathoner, and L. Thiele, “Analytic real-time analysis and timed
automata: A hybrid methodology for the performance analysis of embedded real-
time systems,” Design Automation for Embedded Systems, vol. 14, no. 3, pp. 193–
227, 2010.

[24] M. Lukasiewycz and F. Reimann, “OpenDSE - open design space exploration
framework.” [Online]: available at http://opendse.sf.net/.

[25] Gurobi Optimization, Inc., “Gurobi Optimizer Reference Manual,” 2015. [Online]:
available at http://www.gurobi.com/.

[26] M. Lukasiewycz, S. Steinhorst, and S. Chakraborty, “Priority assignment for
event-triggered systems using mathematical programming,” in Proceedings of the
Conference on Design, Automation and Test in Europe (DATE), pp. 982–987, 2013.

[27] L. Ben Othmane, R. Fernando, R. Ranchal, B. Bhargava, and E. Bodden, “Like-
lihood of threats to connected vehicles,” International Journal of Next-Generation
Computing (IJNGC), vol. 5, no. 3, 2014.

[28] S. Bono, M. Green, A. Stubblefield, A. Juels, A. D. Rubin, and M. Szydlo,
“Security analysis of a cryptographically-enabled RFID device,” in Proceedings
of the USENIX Security Symposium, vol. 5, pp. 1–16, 2005.

[29] T. Hoppe, S. Kiltz, and J. Dittmann, “Adaptive dynamic reaction to automotive
IT security incidents using multimedia car environment,” in Proceedings of the
International Conference on Information Assurance and Security (IAS), pp. 295–
298, 2008.

[30] X. Huang, J. Wu, W. Li, Z. Zhang, F. Zhu, and M. Wu, “Historical spectrum
sensing data mining for cognitive radio enabled vehicular ad-hoc networks,” IEEE
Transactions on Dependable and Secure Computing, vol. 13, no. 1, pp. 59–70,
2015.

[31] C. Lyu, D. Gu, Y. Zeng, and P. Mohapatra, “PBA: Prediction-based authentication
for vehicle-to-vehicle communications,” IEEE Transactions on Dependable and
Secure Computing, vol. 13, no. 1, pp. 71–83, 2015.

[32] G. Calandriello, P. Papadimitratos, J.-P. Hubaux, and A. Lioy, “On the performance
of secure vehicular communication systems,” IEEE Transactions on Dependable
and Secure Computing, vol. 8, no. 6, pp. 898–912, 2011.

[33] P. Fernandez, J. Santa, F. Bernal, and A. Gomez-Skarmeta, “Securing vehicular
IPv6 communications,” IEEE Transactions on Dependable and Secure Computing,
vol. 13, no. 1, pp. 46–58, 2015.

[34] I. Stierand, S. Malipatlolla, S. Froschle, A. Stuhring, and S. Henkler, “Integrating
the security aspect into design space exploration of embedded systems,” in
Proceedings of the International Symposium on Software Reliability Engineering
Workshops (ISSREW), pp. 371–376, 2014.

[35] C. Lin, Q. Zhu, C. Phung, and A. Sangiovanni-Vincentelli, “Security-aware
mapping for CAN-based real-time distributed automotive systems,” in Proceedings
of the International Conference on Computer-Aided Design (ICCAD), pp. 115–121,
2013.

[36] C.-W. Lin, Q. Zhu, and A. Sangiovanni-Vincentelli, “Security-aware modeling
and efficient mapping for CAN-based real-time distributed automotive systems,”
Embedded Systems Letters, IEEE, vol. 7, no. 1, pp. 11–14, 2015.

[37] G. Han, H. Zeng, Y. Li, and W. Dou, “SAFE: Security-Aware FlexRay scheduling
engine,” in Proceedings of the Conference on Design, Automation and Test in
Europe (DATE), pp. 1–4, 2014.

[38] M. Müter, A. Groll, and F. Freiling, “A structured approach to anomaly detection
for in-vehicle networks,” in Proceedings of the International Conference on
Information Assurance and Security (IAS), pp. 92–98, 2010.

[39] M. Toulouse, B. Q. Minh, and P. Curtis, “A consensus based network intrusion de-
tection system,” in Proceedings of the IT International Conference on Convergence
and Security (ICITCS), pp. 1–6, 2015.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2017.2666605

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

