
1

Rapid Analysis of Active Cell Balancing
Circuits

Matthias Kauer, Student Member, IEEE, Swaminathan
Narayanaswamy, Sebastian Steinhorst, Member, IEEE, Samarjit

Chakraborty, Senior Member, IEEE

Abstract—Active cell balancing improves the performance of a battery
pack by transferring charge from one cell to another. Associated design
questions require multiple simulations with 100 cells over several hours.
Since the most efficient transfer methods switch between phases in the
kilohertz range, these simulations require high computational effort or
reduced accuracy.

To enable detailed analysis on a large scale, this work includes state-
of-the-art electrical battery models in active balancing simulation while
keeping the computation effort for one transfer in the low millisecond
range. This is achieved in three steps. First, we model the dynamics
of each transfer phase using standard equivalent circuit abstraction.
Next, we find closed form equations for the so-defined phase dynamics,
yielding an iterative approach that saves computation time by replacing
the numerical solver. Finally, we employ error control techniques to
aggregate phases in that iteration, systematically reducing the millions of
phase evaluations that would be necessary otherwise. Our experiments
show that the speedup from equivalent circuit dynamics to error-
controlled aggregation almost reaches 5 orders of magnitude while
introducing virtually no additional error. This enables simulations of
realistic balancing scenarios in less than a second and is hence suitable
for design space exploration.

Index Terms—Batteries, Battery management systems, Differential
equations, Charge equalization, Active cell balancing, Numerical sim-
ulation

I. INTRODUCTION & RELATED WORK

Context. Justified by their energy density, Lithium-Ion (Li-Ion)
cells currently form the basis for a wide range of applications. These
include smartphones, laptops, as well as electric vehicles. Since their
cell chemistry limits voltage to about 4V, many cells are typically
connected in series and/or parallel to provide the required power
output. While cells in parallel connection are inherently balanced and
can be treated as electrical unit, the charging or discharging of serially
connected cells must stop as soon as the first cell reaches its limit.
Imbalances between these cells, caused by parameter differences
from production or by non-homogeneous cooling, hence reduce the
effective capacity of the pack.

For applications that require high voltage, and thus many cells
in series, imbalances are currently alleviated in two ways. Cells
with similar properties are clustered at production time to minimize
deviations in capacity and internal resistance of over 5% [1]. This is
not sufficient, however, since cell properties evolve differently over
time, even for identical cells under lab conditions [2]. Additionally,
excess energy in individual cells is thus dissipated using switchable
resistors [3]. This passive balancing is easy to implement, but not
energy-efficient.

Alternatively, the excess charge can also be transferred to other
cells, increasing effective capacity and performance. This approach,

Matthias Kauer, Swaminathan Narayanaswamy, and Sebastian Steinhorst
are with TUM CREATE Ltd., Singapore (e-mail: matthias.kauer@tum-
create.edu.sg).

Samarjit Chakraborty is with the Institute for Real-Time Computer Systems,
Technische Universität München, Germany (e-mail: samarjit@tum.de)

This work was financially supported in part by the Singapore National
Research Foundation under its Campus for Research Excellence And Tech-
nological Enterprise (CREATE) programme.

Copyright (c) 2016 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

φt φr

ct cr
+ -

0

I

t

i L φt φr φt

Tt Tr

Tc

Fig. 1: In the inductor-based architecture from [5], transistor
switching drives the charge transfer. During transmitting phase φt,
transmitting cell ct lets inductor current iL rise to peak current I .
After Tt has elapsed, φr begins and the inductor discharges into
the receiving cell. After the variable receiving period Tr , the current
reaches iL = 0 and discharge ends.

referred to as Active Cell Balancing (ACB), is implemented by
numerous circuit architectures [4]. The most efficient ones are built
around temporary storage elements, like inductors or transformers,
and actuated with switching signals in the kilohertz range. While we
believe that the simulation principles are similar for others, we only
investigate the family of inductor-based circuits in this work.

Inductor-based charge transfer operation. Consider the balancing
architecture in Fig. 1 transferring charge from cell ct to cell cr and
the corresponding inductor current iL. In the transmitting phase φt,
the inductor is charged from cell ct. After a period of Tt, the switch
configuration changes and the inductor discharges into cell cr for a
period of Tr which is unknown a priori. The process restarts after
cycle time Tc.

Problem statement. Accurate ACB simulation is currently too
slow to evaluate system-level scenarios with over 100 battery cells
in an interactive fashion. The main challenge are the switching
transitions that change the configuration and consequently the system
dynamics in a non-differentiable fashion. To adequately capture these
transitions, general purpose simulators must increase their resolution
before the end of each phase, severely limiting the simulation
speed. Balancing scenarios with many cells and hours of simulation
time that consider details in the microsecond range hence require
hours to be computed in this way. As such computation times are
often unacceptable, balancing simulations typically either treat small
scenarios [5] or simplify the underlying dynamics [6].

Related work. As first alternative to omitting details or limiting
scenario size, the equivalent circuit abstraction of each transfer phase
can be considered individually which yields an Ordinary Differential
Equation (ODE) for the behavior within a phase. In some cases, the
solution of this ODE is available in closed form and leads to a faster,
iterative simulation approach where the system evolution is calculated
phase-by-phase without numerical solver. Such approaches have been
pursued previously, for instance in [7], but only simple battery models
with one state have been considered.

Electrical battery models with multiple states that consist of a volt-
age source and several resistor-capacitor stages are considered state-
of-the-art, however. It has been demonstrated that simpler models that

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2016.2597224

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

are commonly used in ACB do not track voltage well [8]. Although
the error is negligible for small currents, it may reach 3% even for
ordinary currents around 1 C1. When balancing immediately after
regular operation, such as driving of an electric vehicle, where higher
currents are typical, the error may be even larger. The inclusion of
a more accurate battery model, as discussed in this work, is thus
necessary to broaden the scope of ACB design.

Contributions & paper organization. This paper is concerned
with accurate, but fast simulation of ACB. Considering the charge
transfer dynamics in localized fashion via standard equivalent circuit
abstraction, it compares three simulation approaches that build on
one another. The first, straightforward approach (Section II-A) uses
a numerical solver for the intra-phase dynamics. It represents a
general purpose simulator and is included as a reference. The second
approach (Section II-B) assumes constant voltages within a phase
and derives closed-form equations for the intra-phase evolution. This
leads to an iterative method that has been similarly derived in previous
works like [9]. The paper at hand improves upon those results by
(i) integrating the more sophisticated cell model from [8] into the
formulation for a higher accuracy at equivalent computation speed.
Instead of calculating the so-defined iteration phase by phase, the
third approach, introduced here, aggregates phases by (ii) applying
error control and adaptive step size techniques from the ODE domain
(Section II-C).

Our experiments confirm that the equivalent circuit abstraction
leads to less than 0.5% deviation from SPICE simulations (Sec-
tion III-A). Although introducing virtually no error compared to the
equivalent circuit dynamics, the phase aggregation technique is more
than 2000 times faster than the iterative approach from previous
works like [9] and more accurate thanks to the improved battery
model (Section III-B).

II. EQUIVALENT CIRCUIT CHARGE TRANSFER MODELS

Fig. 1 shows a single transfer between cells ct and cr , occurring in
two phases. There may be other, concurrent transfers with their own
phases, but they cannot share connections. Please refer to, e.g., [7] for
a more detailed discussion on the switching rules that enable such
transfers. Each phase only involves a subset of the overall circuit
and can be described using an equivalent circuit with aggregated
resistances. For instance, in the architecture from Fig. 1, the serial
resistances Rt and Rr of the respective phases summarize to

Rt =RM +RL +R0 Rr =RM +RL +R0. (1)

Here, R0 is the internal resistance of the battery and RM , RL refer
to the resistance of transistor and inductor, respectively. Fig. 2 shows
the equivalent circuits that correspond to the transfers in Fig. 1.
Transmitting and receiving cell ct and cr have been expanded to
the model from [8], with the serial resistance integrated into Rt,
Rr . Many circuits from the family of inductor-based charge transfer
circuits can be analyzed from this perspective, varying only their
resistance formula.

A. System dynamics within a transfer phase

This section introduces the dynamics of the ACB process. As such,
it serves first of all as stepping stone for the following sections.
Moreover, the straightforward application of a numerical solver to
these dynamics is close to the computation performed by a circuit
simulator. For this reason, we also use the approach from this
section as reference solution with the highest accuracy, but longest
computation time.

1A current of 1 C is defined to fully charge or discharge a cell in 1 hour.

ct

φt

cr

φr

Ct,2Ct,1

Rt,2Rt,1

+−

Vt,0(zt)

Ct,0
it

zt

L
itRt

Cr,2Cr,1

Rr,2Rr,1

+−

Vr,0(zr)

Cr,0
ir

zr

L
irRr

D

Fig. 2: By aggregating all resistances on the current path, we can
describe the charge transfer in two equivalent circuits. The current in
the inductor rises during φt until the transistors switch over and the
inductor discharges during φr . Cells ct and cr have been expanded
to the accurate model from [8]. Diode D is not necessary in some
circuit variants; we then set Vd = 0.

Consider the equivalent circuits from Fig. 2. They show the charge
transfer from Fig. 1 separated into two phases, φt and φr . An
electrical model with two resistor-capacitor stages, as in [8], has been
substituted for the battery cells. Such models are currently state-of-
the-art; two stages are the most common choice although “in many
studies, using one RC pair has shown accurate enough performance”
as Rahimi-Eichi et al. summarize in their overview paper [10]. Note
that the approach from the paper at hand can accommodate additional
stages in a straightforward fashion. For parameterization details,
please refer to the respective literature.

The dynamics of the transmitting and receiving cells are identical
except for their parameters and current direction. The current di-
rection follows the convention that positive currents discharge and
negative currents charge a cell. The charge differences q, being
integrals of the currents, adopt the same signs. In this way, we can
always add q without distinguishing cases and the Resistor-Capacitor
(RC) voltages receive the correct sign automatically.

The system dynamics have four states per cell and 8 states in total:
it, ir are the respective cell currents and Qt,0, . . . , Qr,2 are the
charges in the respective capacitors from Fig. 2. Q0, a short notation
for both Qt,0 and Qr,0, models the charge of the cell itself. It is often
expressed in relation to C0 rather than as absolute value. This ratio
z = Q0/C0 is referred to as the State-of-Charge (SoC). Absolute
changes in SoC are denominated in percentage (pp) or basis points
(bp). V0(Q0), the Open Circuit Voltage (OCV), describes the relation
between a cell’s charge and its voltage, without external influences.
The OCV is obtained from measurements and typically expressed as
piecewise linear function or via another form of curve-fitting. The
voltages of the RC stages, modeling parasitic voltage effects, are
given by Vj(Qj) = Qj/Cj for j = 1, 2. The voltages from the
various stages then yield the following total voltages for the respective
phases:

Vt =

2∑
j=0

Vt,j(Qt,j) Vr =

2∑
j=0

Vr,j(Qr,j) + Vd (2)

Vd models additional voltage from the diode preventing undesirable
discharge of cr during φr . This is not required during φt and
elaborate switching signals allow forgoing the diode entirely, modeled
by setting Vd = 0, to increase efficiency.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2016.2597224

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

With the voltage definitions from (2), the dynamics of the main
mesh in Fig. 2, can be described as follows.

d

dt
Q0 = −i d

dt
i =

1

L
[V − iR] (3)

In addition to Q0 in (3), the RC stages must also be updated.

d

dt
Qj = −i− Vj(Qj)

Rj
j = 1, 2 (4)

When it = 0 or ir = 0, because the corresponding transistor is
not conducting, the respective cell is relaxing. In this case, we must
still update the resistor-capacitor stages using (4).

Given timing parameters Tt, Tc, the system can now be simulated
as follows.

φt Solve ODE system (3 & 4) with it(0) = 0 and end
time Tt to update transmitting cell ct. This updates states[
Qt,0 Qt,1 Qt,2

]
and yields peak current I . Simultaneously,

relax receiving cell cr by solving ODE (4). This updates states[
Qr,1 Qr,2

]
.

φr After the circuit switches over, relax transmitting cell ct with
ODE (4), updating

[
Qt,1 Qt,2

]
. Solve ODE system (3 & 4)

with ir(Tt) = −it(Tt) and end time Tc for cr . This updates[
Qr,0 Qr,1 Qr,2

]
.

* Repeat until K, the desired number of cycles, is reached.

Note that during φr , receiving time Tr is not known a priori. Its
calculation can be circumvented by setting ir(t) := max(0, ir(t))
before updating charges. Alternatively, one may use (8) from Sec-
tion II-B to calculate the corresponding timing directly or perform
a binary search over the time domain if the ODE solver permits.
These alternative approaches also handle requirements like constant
peak current I , implying Tt adjustments at runtime and immediate
switching back to φt when i = 0 and Tr has elapsed to ensure
Tc = Tt + Tr .

B. Closed form equation for intra-phase behavior

All capacitors from the cell model in Fig. 2 are large, modeling
effects in the domain of seconds and minutes. Assuming their
voltages remain constant during individual cycles hence does not
introduce noticeable errors, but it lets us derive closed-form solutions
for current and charge movement. The capacitors are then updated
after each cycle. This reformulation has been used previously to speed
up simulation, e.g., in [9]. Whereas those results relied on a simple
battery model with a single state, the paper at hand includes a state-
of-the-art model for higher accuracy. Nevertheless, the computational
effort remains in the same range and the formulation from this section
hence also represents previous computation speeds in comparison
with the approach from Section II-C.

With the assumption of a constant voltage V , ODE (3) has a unique
solution:

i(t, V, i0, R) =
V

R
− V − i0R

R
exp

(−R
L
t
)

(5)

The ODE parameters V , i0 = i(0), R need to be adjusted according
to the individual phase as described in the previous section. To update
charges and thus voltages in the model, we first obtain the main
update term q by integrating i.

q(T, V, i0, R) =

∫ T

0

−i(t, V, i0, R) dt (6)

=
V

R
T +

L(V − i0R)

R2

[
exp

(−R
L
T
)
− 1
]

Here, the integration constant is chosen such that q(0) = 0.

Tt Tc

phase aggr.

intra-phase

closed-form

t

Q
r

Fig. 3: Modeling intra-phase behavior (, Section II-A) provides
the most accurate charge information at all times. When solving
phases in closed form (, Section II-B), we obtain accurate charge
information only at the end of phases. In order to avoid kinks, the
model underlying phase aggregation (, Section II-C) is content
being accurate only at the end of cycles.

The updates of the RC stages must consider their self-discharge
in addition to the effects of balancing current i. Integrating that self-
discharge term in (4), we obtain

qj(T,Qj) =− Vj(Qj)

Rj
T. (7)

For time calculations, the current from (5) is also invertible. More
concretely, given desired current id, the time Td, fulfilling i(Td) = id
can be calculated as

Td(id, V, i0, R) =
−L
R

log
(V − idR
V − i0R

)
. (8)

This equation is helpful in several situations. If peak current I is
specified, it calculates on-the-fly timing. During φr , it is required even
if timing parameters are specified. As shown in Fig. 1, the inductor
current reaches iL = 0 before Tc. To calculate the transferred charge,
the discharge period Tr = Td(0, Vr,−I,Rr) must be known.

All formulas of this section are only valid as long as the system
configuration does not switch. Over one cycle of charge and discharge
the dynamics move through different equivalent circuits with different
parameters and initial conditions. For simulations of multiple cycles,
the following iterative approach is hence required.

1) Obtain cell voltages from (2).
2) Calculate peak current I given transmitting time Tt with (5).

Alternatively, calculate Tt given I using (8).
3) Update charges for phase φt, using partially specialized
qt(T) := q(T, Vt, 0, Rt) from (6) and qt,j , qr,j from (7).

Qt,0(t+ Tt) = Qt,0(t) + qt(Tt) (9)

Qt,j(t+ Tt) = Qt,j(t) + qt(Tt) + qt,j(Tt, Qt,j(t))

Qr,0(t+ Tt) = Qr,0(t)

Qr,j(t+ Tt) = Qr,j(t) + qr,j(Tt, Qr,j(t))

4) From (8), calculate discharging time Tr until i = 0 and
discharge of cr ends. Ensure Tr + Tt ≤ Tc if Tc has been
specified, then analogously update charges for phase φr , using
qr(Tr) := q(T, Vr,−I, Rr) from (6).

5) Relax all RC stages for Tc − (Tr + Tt) with qj from (7).
6) Repeat, until K, the desired number of cycles, is reached.

C. Error-controlled, adaptive phase aggregation

In this section, adaptive techniques from the ODE domain are
applied to the recurrence relation in Section II-B. This method
requires knowledge of embedded Runge-Kutta methods as well as
reformulations and challenges from the ACB domain, like the variable
timing discussed in the next paragraph. Consequently, most ACB
simulations are currently still performed by directly applying a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2016.2597224

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

numerical solver, as in Section II-A, or with a recurrence relation, as
in Section II-B.

The previous abstraction levels calculate system dynamics over
time. Here, we consider the evolution over cycles k. Each cycle has
a duration of Tc that varies slightly if a constant peak current is
maintained as voltages change. It is thus necessary to track time as a
separate state variable in this formulation. Tracking time in this way
is simpler than scaling results to account for time variations. This
perspective also makes it easier to reason about the accuracy loss
outside cycle ends that we accept to alleviate kinks (see Fig. 3).

In the following, we adopt the formulations from Section II-B to
sum up the state differences of a single cycle:[

Vt Vr

]
=
[∑2

j=0 Vt,j(Qt,j)
∑2

j=0 Vr,j(Qr,j) + Vd

]
[
I Tr

]
=
[
i(Tt, Vt, 0, Rt) Td(0, Vr,−I, Rr)

]
(10)

∆t

∆k
=Tc

∆Qt

∆k
=q(Tt, Vt, 0, Rt)

∆Qt,j

∆k
=q(Tt, Vt, 0, Rt) + qt,j(Tc, Qt,j) , j = 1, 2

∆Qr

∆k
=q(Tr, Vr,−I, Rr)

∆Qr,j

∆k
=q(Tr, Vr,−I, Rr) + qr,j(Tc, Qr,j) , j = 1, 2

This is the formulation for fixed timing parameters Tt, Tc. Constant
peak current can be achieved by calculating Tt, Tc on the fly with
(8) in addition to Tr .

(10) is not inherently an ODE because k,∆k ∈ {1, 2, . . .K} are
discrete variables. Nevertheless, we are interested in applying ODE
techniques with error control and adaptive step size. The typical
choice for these requirements are solvers from the class of embedded
Runge-Kutta methods. An unadjusted solver from that class may also
evaluate the right-hand side for non-integral cycle counts and thus
at instants where charge evolution is incorrectly interpolated. We
will first quantify the magnitude of this issue and then propose a
remedy for it. Consider the following worst case calculation. With
an average balancing current equivalent to a C rate of 1 and using a
low frequency with Tt = 10ms, the SoC changes only by

∆z =
∆Q

C0
=

1·C0
3600s

· 10ms

C0
≈ 2.7e-4pp = 0.027bp.

Even assuming a region where the OCV increases quickly by 100mV
pp

,
∆z corresponds to only ∆V = 0.027mV. With a minimum cell
voltage of 2.5V, the worst case error thus remains in the order of
1e-5 and is typically far smaller. As cell models come with inherent
modeling errors in the order of 1e-3 [8], one may accept this error
and resort to readily available methods directly.

Alternatively, ensuring that embedded Runge-Kutta solvers only
evaluate integral cycle counts is also possible. These solvers have
fixed nodes, proportional to the current step size ∆k, at which a func-
tion is evaluated. For instance, the Bogacki-Shampine method [11],
combining orders 2 and 3, evaluates at 0∆k, 1

2
∆k, 3

4
∆k and 1∆k.

Restricting steps ∆k to multiples of their common denominator,
here 4, ensures that all evaluation points are integral. Other popular
embedded methods with order 4/5, like Dormand-Prince [12] which is
the default solver in MATLAB and Cash-Karp [13] similarly require
multiples of 90 and 40, respectively.

III. EXPERIMENTAL RESULTS

We have implemented the approaches described in Section II, using
the C++ library boost::odeint [14]. This forms the back end of our
implementation that we drive from Python.

All battery parameters correspond to the 850mA Li-Ion polymer
cell which has been characterized in [8] for various SoC levels.
We only replace their analytic OCV relation with a piecewise linear
formulation because it interacts better with the rest of our framework.
This model comes with a good SoC (or runtime) error of 0.4% and
a voltage deviation of 15mV.

We evaluate accuracy and speedup of the proposed techniques
in two stages. First, we compare the intra-phase model from Sec-
tion II-A to a circuit simulator to quantify the errors introduced by
the equivalent circuit abstraction. Next, we compare all abstraction
levels from Section II to each other, using longer simulation times of
several minutes. Although impossible for the circuit simulator, such
times are still small for ACB strategies.

A. Equivalent circuit model accuracy & speedup

We investigate a transfer between a transmitting cell at 60% SoC
and a receiving cell at 40%, setting the cell parameters accordingly. In
addition, we modeled an inductor resistance RL = 1mΩ and a diode
voltage Vd = 0.7V. This transfer is simulated in SPICE and with the
intra-phase ODE from Section II-A. We perform the transfer over
a variety of Pulse Width Modulation (PWM) frequencies, keeping
the peak current approximately constant by suitably decreasing the
inductance with shorter timing. All transfers are executed over 10
cycles of fixed timing. Fig. 4 shows two sets of this experiment. The
nominal peak currents, assuming lossless dynamics, were 400mA
and 2A. Although we do not see a discernible trend, the relative error
in SoC remained below 0.5% over the investigated frequencies. We
have selected these frequencies to span more than the most relevant
range between 1kHz and 100kHz. The SoC evolution depends on all
voltages and is, as such, the most error-sensitive value in the system.
Relative errors in the various voltages all remained even smaller. We
attribute these errors to several aspects that are only modeled in the
circuit simulator, like diodes and switches or imperfect, but realistic
current edges. Since the errors do not exceed inherent modeling errors
of the cell model, the equivalent circuit abstraction is well justified.

The speedup in this experiment is significant. All SPICE simula-
tions required over 5s to calculate 10 cycles at the desired accuracy.
With the equivalent circuit abstraction, the intra-phase model solves
the same task in the millisecond range. Although the simulation time
varies widely, the higher frequency and accuracy requirement in the
shorter experiments keep the computation effort roughly constant.

B. Abstraction level accuracy & speedup

The previous section mainly evaluated inaccuracies introduced
by the equivalent circuit abstraction. This section investigates the
techniques from Section II building on that abstraction. For this
purpose, we consider the same cell pair with 60 and 40% SoC

−0.4 0 0.4

100Hz

1kHz

10kHz

100kHz

1MHz

Relative error [%]
−0.4 0 0.4

Relative error [%]

Fig. 4: For both nominal currents of 400mA (left) and 2A (right),
the relative error in SoC of transmitting (black) and receiving (white)
cell remains small compared to SPICE over a wide frequency range.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2016.2597224

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

over longer simulation times with randomized transfer parameters.
We draw resistances R = 10xΩ, x ∈ [−3, 0] and peak currents
I ∈ [0.1A, 2.5A], according to a uniform distribution. Timing param-
eters were fixed to

[
Tt Tc

]
=
[
200µs 420µs

]
. The inductance

L = 4.0V
I
Tt is scaled to approximately achieve the desired peak

current. After drawing the random parameters, we perform K = 106

cycles with the respective settings.
Fig. 5 shows the results from 50 such random transfers. Although

the closed form approach from Section II-B and the phase aggregation
technique from Section II-C introduce virtually no additional error,
they achieve a remarkable speedup. The closed form approach is
roughly 35 times faster than the intra-phase ODE solver, and phase
aggregation is another 2500 times faster. Compared to intra-phase
ODE, phase aggregation hence achieves a speedup of about 90000.
These measurements were made on a workstation with 3.4GHz Intel
i7-3770 CPU and 16GB RAM. All implementations are single-
threaded. Note that the computation time of each approach does
not vary a lot over the experiment set, indicating that the required
effort depends on the number of simulation cycles and not the
total simulation time. With higher frequency, the proposed methods
therefore become even more beneficial.

Extrapolating the computation times from Fig. 5 involving two
cells and a simulation time of about 7 minutes, we consider a battery
pack that performs 10 parallel transfers, using a frequency of 20kHz
(10 times higher) and a simulation time of 7 hours. For this 6000
times larger scenario, a general purpose solver requires at least a full
day. Closed-form iteration reduces that time, but still needs more than
40 minutes. Only the phase aggregation approach calculates results in
less than 2 seconds and remains fast enough to interactively evaluate
balancing strategies with respect to balancing time and efficiency.

Fig. 6 shows an example time series plot from one of the random
transfers that we performed, demonstrating why phase aggregation is
so much faster. Instead of calculating millions of cycles one by one,
it requires only dozens of evaluations to provide the desired result.
This plot also demonstrates the importance of the RC stages in the
model, as the voltage they contribute on the receiver side exceeds
40mV.

IV. CONCLUDING REMARKS

This paper improves the design flow of ACB circuits and strategies
with a simulation technique that calculates detailed transfer dynamics
responsively, even for large scenarios. The numerical error has been
carefully controlled in all stages of abstraction and never exceeds the

10−10 10−9 10−8

IN
T

R
A

C
F

PA

Reference: No error

Relative error
10−4 10−2 100

Computation time [s]

Fig. 5: Box plot showing percentiles 0/25/50/75/100: Neither closed
form (CF, relerr 2.6e-11 to 1.1e-8, mean 7.0e-10) nor phase aggrega-
tion (PA, relerr 3.5e-11 to 1.1e-8, mean 8.7e-10) method introduce
noticeable errors into the simulation over a direct solution of the
equivalent circuit dynamics (INTRA) (all methods in Section II).
However, speedups of several orders of magnitude are achieved.

0

20

40

V
r
,1

+
V
r
,2

[m
V

]

0 100 200 300 400

1e-6

1e-4

time [s]

‖∆
V
‖

Fig. 6: The phase aggregation approach (circles) tracks the intra-
phase ODE solution (line) perfectly, calculating only dozens, not
millions, of cycles. In the RC voltage of the receiver, the absolute
error remains around 1e-4mV.

inherent modeling error. The achieved speedup of over 2000 com-
pared to previous techniques is crucial, in particular for interactive
applications and ACB routing design where a parameterized strategy
has to be evaluated over a large set of scenarios.

REFERENCES

[1] D. Shin, M. Poncino, E. Macii, and N. Chang, “A Statistical Model-
Based Cell-to-Cell Variability Management of Li-ion Battery Pack,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 2, pp. 252–265, 2015.

[2] T. Baumhöfer, M. Brühl, S. Rothgang, and D. U. Sauer, “Production
caused variation in capacity aging trend and correlation to initial cell
performance,” Journal of Power Sources, vol. 247, pp. 332–338, 2014.

[3] M. Isaacson, R. Hollandsworth, P. Giampaoli, F. Linkowsky, A. Salim,
and V. Teofilo, “Advanced Lithium Ion Battery Charger,” in Proc. of
BCAA, 2000.

[4] J. Cao, N. Schofield, and A. Emadi, “Battery Balancing Methods: A
Comprehensive Review,” in Proc. of VPPC, 2008.

[5] N. H. Kutkut, “A Modular Nondissipative Current Diverter for EV
Battery Charge Equalization,” in Proc. of APEC, 1998.

[6] F. Baronti, R. Roncella, and R. Saletti, “Performance Comparison of
Active Balancing Techniques for Lithium-ion Batteries,” Journal of
Power Sources, vol. 267, pp. 603–609, 2014.

[7] M. Kauer, S. Naranayaswami, S. Steinhorst, M. Lukasiewycz,
S. Chakraborty, and L. Hedrich, “Modular System-Level Architecture
for Concurrent Cell Balancing,” in Proc. of DAC, 2013.

[8] M. Chen and G. A. Rincon-Mora, “Accurate Electrical Battery Model
Capable of Predicting Runtime and IV Performance,” IEEE Transactions
on Energy Conversion, vol. 21, no. 2, pp. 504–511, 2006.

[9] M. Kauer, S. Narayanaswamy, S. Steinhorst, M. Lukasiewycz, and
S. Chakraborty, “Many-to-Many Active Cell Balancing Strategy Design,”
in Proc. of ASP-DAC, 2015.

[10] H. Rahimi-Eichi, U. Ojha, F. Baronti, and M. Chow, “Battery Manage-
ment System: An Overview of Its Application in the Smart Grid and
Electric Vehicles,” IEEE Industrial Electronics Magazine, vol. 7, no. 2,
pp. 4–16, 2013.

[11] P. Bogacki and L. F. Shampine, “A 3(2) pair of Runge - Kutta Formulas,”
Applied Mathematics Letters, vol. 2, no. 4, pp. 321–325, 1989.

[12] J. R. Dormand and P. J. Prince, “A Family of Embedded Runge-Kutta
Formulae,” Journal of Computational and Applied Mathematics, vol. 6,
no. 1, pp. 19–26, 1980.

[13] J. R. Cash and A. H. Karp, “A Variable Order Runge-Kutta Method for
Initial Value Problems with Rapidly Varying Right-Hand Sides,” ACM
Transactions on Mathematical Software, vol. 16, no. 3, pp. 201–222,
1990.

[14] K. Ahnert and M. Mulansky, “Odeint – Solving Ordinary Differential
Equations in C++,” in Proc. of AIP, 2011.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCAD.2016.2597224

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

